本书为“经典原版书库”丛书之一。该书是系统阐述组合数学基础、理论、方法和实例的优秀教材。主要介绍了组合数学的概念和思想。包括鸽巢原理、计数技术、排列组合、Polya计数法、二项式系数、容斥原理、生成函数和递推关系以及组合结构(匹配、实验设计、图)等。
网站首页 软件下载 游戏下载 翻译软件 电子书下载 电影下载 电视剧下载 教程攻略
书名 | 组合数学(英文版第5版)/经典原版书库 |
分类 | 科学技术-自然科学-数学 |
作者 | (美)布鲁迪 |
出版社 | 机械工业出版社 |
下载 | ![]() |
简介 | 编辑推荐 本书为“经典原版书库”丛书之一。该书是系统阐述组合数学基础、理论、方法和实例的优秀教材。主要介绍了组合数学的概念和思想。包括鸽巢原理、计数技术、排列组合、Polya计数法、二项式系数、容斥原理、生成函数和递推关系以及组合结构(匹配、实验设计、图)等。 内容推荐 本书是系统阐述组合数学基础、理论、方法和实例的优秀教材,出版30多年来多次改版,被MIT、哥伦比亚大学、UIUC、威斯康星大学等众多国外高校采用,对国内外组合数学教学产生了较大影响,也是相关学科的主要参考文献之一。 本书侧重于组合数学的概念和思想。包括鸽巢原理、计数技术、排列组合、Polya计数法、二项式系数、容斥原理、生成函数和递推关系以及组合结构(匹配、实验设计、图)等。深入浅出地表达了作者对该领域全面和深刻的理解。除包含第4版中的内容外,本版又进行了更新,增加了有限概率、匹配数等内容。此外,各章均包含大量练习题,并在书末给出了参考答案与提示。 目录 Preface 1 What Is Combinatorics? 1.1 Example: Perfect Covers of Chessboards 1.2 Example: Magic Squares 1.3 Example: The Four-Color Problem 1.4 Example: The Problem of the 36 OfFicers 1.5 Example: Shortest-Route Problem 1.6 Example: Mutually Overlapping Circles 1.7 Example: The Game of Nim 1.8 Exercises 2 Permutations and Combinations 2.1 Four Basic Counting Principles 2.2 Permutations of Sets 2.3 Combinations (Subsets) of Sets 2.4 Permutations of Multisets 2.5 Combinations of Multisets 2.6 Finite Probability 2.7 Exercises 3 The Pigeonhole Principle 3.1 Pigeonhole Principle: Simple Form 3.2 Pigeonhole Principle: Strong Form 3.3 A Theorem of Ramsey 3.4 Exercises 4 Generating Permutations and Combinations 4.1 Generating Permutations 4.2 Inversions in Permutations 4.3 Generating Combinations 4.4 Generating r-Subsets 4.5 Partial Orders and Equivalence Relations 4.6 Exercises 5 The Binomial Coefficients 5.1 Pascal's Triangle 5.2 The Binomial Theorem 5.3 Unimodality of Binomial Coefficients 5.4 The Multinomial Theorem 5.5 Newton's Binomial Theorem 5.6 More on Partially Ordered Sets 5.7 Exercises 6 The Inclusion-Exclusion Principle and Applications 6.1 The Inclusion-Exclusion Principle 6.2 Combinations with Repetition 6.3 Derangements 6.4 Permutations with Forbidden Positions 6.5 Another Forbidden Position Problem 6.6 M6bius Inversion 6.7 Exercises 7 Recurrence Relations and Generating Functions 7.1 Some Number Sequences 7.2 Generating Functions 7.3 Exponential Generating Functions 7.4 Solving Linear Homogeneous Recurrence Relations 7.5 Nonhomogeneous Recurrence Relations 7.6 A Geometry Example 7.7 Exercises 8 Special Counting Sequences 8.1 Catalan Numbers 8.2 Difference Sequences and Stirling Numbers 8.3 Partition Numbers 8.4 A Geometric Problem 8.5 Lattice Paths and Schr6der Numbers 8.6 Exercises 9 Systems of Distinct Representatives 9.1 General Problem Formulation 9.2 Existence of SDRs 9.3 Stable Marriages 9.4 Exercises 10 Combinatorial .Designs 10.1 Modular Arithmetic 10.2 Block Designs 10.3 Steiner Triple Systems 10.4 Latin Squares 10.5 Exercises 11 Introduction to Graph Theory 11.1 Basic Properties 11.2 Eulerian Trails 11.3 Hamilton Paths and Cycles 11.4 Bipartite Multigraphs 11.5 Trees 11.6 The Shannon Switching Game 11.7 More on Trees 11.8 Exercises 12 More on Graph Theory 12.1 Chromat,ic Number 12.2 Plane and Planar Graphs 12.3 A Five-Color Theorem 12.4 Independence Number and Clique Number 12.5 Matching Number 12.6 Connectivity 12.7 Exercises 13 Digraphs and Networks 13.1 Digraphs 13.2 Networks 13.3 Matchings in Bipartite Graphs Revisited 13.4 Exercises 14 Polya Counting 14.1 Permutation and Symmetry Groups 14.2 Burnside's Theorem 14.3 Polya's Counting Formula 14.4 Exercises Answers and Hints to Exercises Bibliography Index |
随便看 |
|
霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。