网站首页  软件下载  游戏下载  翻译软件  电子书下载  电影下载  电视剧下载  教程攻略

请输入您要查询的图书:

 

书名 微电子封装组件的建模和仿真--制造可靠性与测试(精)
分类 科学技术-工业科技-电子通讯
作者 刘胜//刘勇
出版社 化学工业出版社
下载
简介
编辑推荐

虽然集成电路封装在设计阶段对建模和仿真的需求正在不断增加,但是目前的大多数组件工艺和多种可靠性测试仍然依据耗时的“测试一尝试”的方法来获得最优的方案。建模和仿真能够自如地通过虚拟实验设计的方法获得最优方案。这种方法极大地降低了电子产品的成本和生产时间,对于新产品的开发效果尤其显著。使用建模和仿真技术对促进未来三维封装的发展将会越来越有必要。在《微电子封装组件的建模和仿真——制造、可靠性与测试》中,刘胜博士和刘勇博士将会介绍建模与仿真的基础知识和高级技巧以帮助相关领域的人员运用建模与仿真的方法解决他们遇到的问题。

本书适用于微电子封装和互联设计、装配制造、可靠性/质量及半导体材料相关领域的工程师、研究人员和研究生。相关行业的产品经理、应用工程师和销售人员,在需要向客户介绍装配制造过程、可靠性和测试会如何影响产品质量时,也可以从本书中获得裨益。

内容推荐

随着电子封装的发展,电子封装已从传统的四个主要功能(电源系统、信号分布及传递、散热及机械保护)扩展为六个功能,即增加了DFX及系统测试两个新的功能。其中DFX是为“X”而设计,X包括:可制造性、可靠性、可维护性、成本,甚至六西格玛。DFX有望在产品设计阶段实现工艺窗口的确定、可靠性评估和测试结构及参数的设计等功能,真正做到“第一次就能成功”,从而将计算机辅助工程(CAE)变为计算机主导工程(CE),以大大加速产品的上市速度。本书是全面介绍DFX在封装中应用的图书。作为封装工艺过程和快速可靠性评估及测试建模仿真的第一本专著,《微电子封装组件的建模和仿真——制造、可靠性与测试》中包含两位作者刘胜、刘勇在工业界二十多年的丰富经验,以及在MEMS、IC和LED封装部分成功的实例,希望能给国内同行起到抛砖引玉的作用。同时,读者将会从书中的先进工程设计和微电子产品的并行工程和协同设计方法中受益。

《微电子封装组件的建模和仿真——制造、可靠性与测试》主要读者对象为学习DFX(制造工艺设计、测试设计、可靠性设计等)的研究人员、工程师和学生等。

目录

Foreword

Foreword

Preface

Acknowledgments

About the Authors

Part I Mechanics and Modeling

1 Constitutive Models and Finite Element Method

1.1 Constitutive Models for Typical Materials

1.1.1 Linear Elasticity

1.1.2 Elastic-Visco-Plasticity

1.2 Finite Element Method

1.2.1 Basic Finite Element Equations

1.2.2 Nonlinear Solution Methods

1.2.3 Advanced Modeling Techniques in Finite

Element Analysis

1.2.4 Finite Element Application in Semiconductor

Packaging Modeling

1.3 Chapter Summary

References

2 Material and Structural Testing for Small Samples

2.1 Material Testing for Solder Joints

2.1.1 Specimens

2.1.2 A Thermo-mechanical Fatigue Tester

2.1.3 Tensile Test

2.1.4 Creep Test

2.1.5 Fatigue Test

2.2 Scale Effect of Packaging Materials

2.2.1 Specimens

2.2.2 Experimental Results and Discussions

2.2.3 Thin Film Scale Dependence for Polymer Thin Films

2.3 Two-ball Joint Specimen Fatigue Testing

2.4 Chapter Summary

References

3 Constitutive and Use-supplied Subroutines for Solders

Considering Damage Evolution

3.1 Constitutive Model for Tin-lead Solder Joint

3.1.1 Model Formulation

3.1.2 Determination of Material Constants

3.1.3 Model Prediction

3.2 Visco-elastic-plastic Properties and Constitutive Modeling of Under?lls

3.2.1 Constitutive Modeling of Under?lls

3.2.2 Identi?cation of Material Constants

3.2.3 Model Veri?cation and Prediction

3.3 A Damage Coupling Framework of Uni?ed Viscoplasticity

for the Fatigure of Solder Alloys

3.3.1 Damage Coupling Thermodynamic Framework

3.3.2 Large Deformation Formulation

3.3.3 Identi?cation of the Material Parameters

3.3.4 Creep Damage

3.4 User-supplied Subroutines for Solders Considering

Damage Evolution

3.4.1 Return-Mapping Algorithm and FEA Implementation

3.4.2 Advanced Features of the Implementation

3.4.3 Applications of the Methodology

3.5 Chapter Summary

References

4 Accelerated Fatigue Life Assessment Approaches for Solders

in Packages

4.1 Life Prediction Methodology

4.1.1 Strain-Based Approach

4.1.2 Energy-Based Approach

4.1.3 Fracture Mechanics-Based Approach

4.2 Accelerated Testing Methodology

4.2.1 Failure Modes via Accelerated Testing Bounds

4.2.2 Isothermal Fatigue via Thermal Fatigue

4.3 Constitutive Modeling Methodology

4.3.1 Separated Modeling via Uni?ed Modeling

4.3.2 Viscoplasticity with Damage Evolution

4.4 Solder Joint Reliability via FEA

4.4.1 Life Prediction of Ford Joint Specimen

4.4.2 Accelerated Testing: Insights from Life Prediction

4.4.3 Fatigue Life Prediction of a PQFP Package

4.5 Life Prediction of Flip-Chip Packages

4.5.1 Fatigue Life Prediction with and without Under?ll

4.5.2 Life Prediction of Flip-Chips without Under?ll via Uni?ed and Separated

Constitutive Modeling

4.5.3 Life Prediction of Flip-Chips under Accelerated Testing

4.6 Chapter Summary

References

5 Multi-physics and Multi-scale Modeling

5.1 Multi-physics Modeling

5.1.1 Direct-coupled Analysis

5.1.2 Sequential Coupling

5.2 Multi-scale Modeling

5.3 Chapter Summary

References

6 Modeling Validation Tools

6.1 Structural Mechanics Analysis

6.2 Requirements of Experimental Methods for Structural

Mechanics Analysis

6.3 Whole Field Optical Techniques

6.4 Thermal Strains Measurements Using Moir e Interferometry

6.4.1 Thermal Strains in a Plastic Ball Grid Array

(PBGA) Interconnection

6.4.2 Real-time Thermal Deformation Measurements

Using Moir e Inteferometry

6.5 In-situ Measurements on Micro-machined Sensors

6.5.1 Micro-machined Membrane Structure

in a Chemical Sensor

6.5.2 In-situ Measurement Using Twyman-Green

Interferometry

6.5.3 Membrane Deformations due to Power Cycles

6.6 Real-time Measurements Using Speckle Inteferometry

6.7 Image Processing and Computer Aided Optical Techniques

6.7.1 Image Processing for Fringe Analysis

6.7.2 Phase Shifting Technique for Increasing

Displacement Resolution

6.8 Real-Time Thermal-Mechanical Loading Tools

6.8.1 Micro Mechanical Testing

6.8.2 Environmental Chamber

6.9 Warpage Measurement Using PM-SM System

6.9.1 Shadow Moir e and Project Moir e Setup

6.9.2 Warpage Measurement of a BGA, Two Crowded PCBs

6.10 Chapter Summary

References

7 Application of Fracture Mechanics

7.1 Fundamental of Fracture Mechanics

7.1.1 Energy Release Rate

7.1.2 J Integral

7.1.3 Interfacial Crack

7.2 Bulk Material Cracks in Electronic Packages

7.2.1 Background

7.2.2 Crack Propagation in Ceramic/Adhesive/Glass System

7.2.3 Results

7.3 Interfacial Fracture Toughness

7.3.1 Background

7.3.2 Interfacial Fracture Toughness of Flip-chip Package

between Passivated Silicon Chip and Under?ll

7.4 Three-dimensional Energy Release Rate Calculation

7.4.1 Fracture Analysis

7.4.2 Results and Comparison

7.5 Chapter Summary

References

8 Concurrent Engineering for Microelectronics

8.1 Design Optimizations

8.2 New Developments and Trends in Integrated

Design Tools

8.3 Chapter Summary

References

9 Typical IC Packaging and Assembly Processes

9.1 Wafer Process and Thinning

9.1.1 Wafer Process Stress Models

9.1.2 Thin Film Deposition

9.1.3 Backside Grind for Thinning

9.2 Die Pick Up

9.3 Die Attach

9.3.1 Material Constitutive Relations

9.3.2 Modeling and Numerical Strategies

9.3.3 FEA Simulation Result of Flip-Chip Attach

9.4 Wire Bonding

9.4.1 Assumption, Material Properties and Method of Analysis

9.4.2 Wire Bonding Process with Different Parameters

9.4.3 Impact of Ultrasonic Amplitude

9.4.4 Impact of Ultrasonic Frequency

9.4.5 Impact of Friction Coef?cients between Bond Pad and FAB

9.4.6 Impact of Different Bond Pad Thickness

9.4.7 Impact of Different Bond Pad Structures

9.4.8 Modeling Results and Discussion for Cooling Substrate

Temperature after Wire Bonding

9.5 Molding

9.5.1 Molding Flow Simulation

9.5.2 Curing Stress Model

9.5.3 Molding Ejection and Clamping Simulation

9.6 Leadframe Forming/Singulation

9.6.1 Euler Forward versus Backward Solution Method

9.6.2 Punch Process Setup

9.6.3 Punch Simulation by ANSYS Implicit

9.6.4 Punch Simulation by LS-DYNA

9.6.5 Experimental Data

9.7 Chapter Summary

References

10 Opto Packaging and Assembly

10.1 Silicon Substrate Based Opto Package Assembly

10.1.1 State of the Technology

10.1.2 Monte Carlo Simulation of Bonding/Soldering Process

10.1.3 Effect of Matching Fluid

10.1.4 Effect of the Encapsulation

10.2 Welding of a Pump Laser Module

10.2.1 Module Description

10.2.2 Module Packaging Process Flow

10.2.3 Radiation Heat Transfer Modeling for Hermetic

Sealing Process

10.2.4 Two-Dimensional FEA Modeling for Hermetic Sealing

10.2.5 Cavity Radiation Analyses Results and Discussions

10.3 Chapter Summary

References

11 MEMS and MEMS Package Assembly

11.1 A Pressure Sensor Packaging (Deformation and Stress)

11.1.1 Piezoresistance in Silicon

11.1.2 Finite Element Modeling and Geometry

11.1.3 Material Properties

11.1.4 Results and Discussion

11.2 Mounting of Pressure Sensor

11.2.1 Mounting Process

11.2.2 Modeling

11.2.3 Results

11.2.4 Experiments and Discussions

11.3 Thermo-Fluid Based Accelerometer Packaging

11.3.1 Device Structure and Operation Principle

11.3.2 Linearity Analysis

11.3.3 Design Consideration

11.3.4 Fabrication

11.3.5 Experiment

11.4 Plastic Packaging for A Capacitance Based Accelerometer

11.4.1 Micro-Machined Accelerometer

11.4.2 Wafer-Level Packaging

11.4.3 Packaging of Capped Accelerometer

11.5 Tire Pressure Monitoring System (TPMS) Antenna

11.5.1 Test of TPMS System with Wheel Antenna

11.5.2 3D Electromagnetic Modeling of The Wheel Antenna

11.5.3 Stress Modeling of Installed TPMS

11.6 Thermo-Fluid Based Gyroscope Packaging

11.6.1 Operating Principle and Design

11.6.2 Analysis of Angular Acceleration Coupling

11.6.3 Numerical Simulation and Analysis

11.7 Microjets for Radar and LED Cooling

11.7.1 Microjet Array Cooling System

11.7.2 Preliminary Experiments

11.7.3 Simulation and Model Veri?cation

11.7.4 Comparison and Optimization of Three Microjet Devices

11.8 Air Flow Sensor

11.8.1 Operation Principle

11.8.2 Simulation of Flow Conditions

11.8.3 Simulation of Temperature Field on the Sensor

Chip Surface

11.9 Direct Numerical Simulation of Particle Separation

by Direct Current Dielectrophoresis

11.9.1 Mathematical Model and Implementation

11.9.2 Results and Discussion

11.10 Modeling of Micro-Machine for Use in Gastrointestinal Endoscopy

11.10.1 Methods

11.10.2 Results and Discussion

11.11 Chapter Summary

Reference

12 System in Package (SIP) Assembly

12.1 Assembly Process of Side by Side Placed SIP

12.1.1 Multiple Die Attach Process

12.1.2 Cooling Stress and Warpage Simulation after Molding

12.1.3 Stress Simulation in Trim Process

12.2 Impact of the Nonlinear Materials Behaviors on the Flip-chip

Packaging Assembly Reliability

12.2.1 Finite Element Modeling and Effect of Material Models

12.2.2 Experiment

12.2.3 Results and Discussions

12.3 Stacked Die Flip-chip Assembly Layout and the Material Selection

12.3.1 Finite Element Model for the Stack Die FSBGA

12.3.2 Assembly Layout Investigation

12.3.3 Material Selection

12.4 Chapter Summary

References

Part III Modeling in Microelectronic Package Reliability and Test

13 Wafer Probing Test

13.1 Probe Test Model

13.2 Parameter Probe Test Modeling Results and Discussions

13.2.1 Impact of Probe Tip Geometry Shapes

13.2.2 Impact of Contact Friction

13.2.3 Impact of Probe Tip Scrub

13.3 Comparison Modeling: Probe Test versus Wire Bonding

13.4 Design of Experiment (DOE) Study and Correlation of Probing

Experiment and FEA Modeling

13.5 Chapter Summary

References

14 Power and Thermal Cycling, Solder Joint Fatigue Life

14.1 Die Attach Process and Material Relations

14.2 Power Cycling Modeling and Discussion

14.3 Thermal Cycling Modeling and Discussion

14.4 Methodology of Solder Joint Fatigue Life Prediction

14.5 Fatigue Life Prediction of a Stack Die Flip-chip on Silicon (FSBGA)

14.6 Effect of Cleaned and Non-Cleaned Situations on the Reliability

of Flip-Chip Packages

14.6.1 Finite Element Models for the Clean and Non-Clean Cases

14.6.2 Model Evaluation

14.6.3 Reliability Study for the Solder Joints

14.7 Chapter Summary

References

15 Passivation Crack Avoidance

15.1 Ratcheting-Induced Stable Cracking: A Synopsis

15.2 Ratcheting in Metal Films

15.3 Cracking in Passivation Films

15.4 Design Modi?cations

15.5 Chapter Summary

References

16 Drop Test

16.1 Controlled Pulse Drop Test

16.1.1 Simulation Methods

16.1.2 Simulation Results

16.1.3 Parametric Study

16.2 Free Drop

16.2.1 Simulated Drop Test Procedure

16.2.2 Modeling Results and Discussion

16.3 Portable Electronic Devices Drop Test and Simulation

16.3.1 Test Set Up

16.3.2 Modeling and Simulation

16.3.3 Results

16.4 Chapter Summary

References

17 Electromigration

17.1 Basic Migration Formulation and Algorithm

17.2 Electromigration Examples from IC Device and Package

17.2.1 A Sweat Structure

17.2.2 A Flip-chip CSP with Solder Bumps

17.3 Chapter Summary

References

18 Popcorning in Plastic Packages

18.1 Statement of Problem

18.2 Analysis

18.3 Results and Comparisons

18.3.1 Behavior of a Delaminated Package due to Pulsed

Heating-Veri?cation

18.3.2 Convergence of the Total Strain Energy Release Rate

18.3.3 Effect of Delamination Size and Various Processes

for a Thick Package

18.3.4 Effect of Moisture Expansion Coef?cient

18.4 Chapter Summary

References

Part IV Modern Modeling and Simulation Methodologies

19 Classical Molecular Dynamics

19.1 General Description of Molecular Dynamics Method

19.2 Mechanism of Carbon Nanotube Welding onto the Metal

19.2.1 Computational Methodology

19.2.2 Results and Discussion

19.3 Applications of Car–Parrinello Molecular Dynamics

19.3.1 Car–Parrinello Simulation of Initial Growth Stage

of Gallium Nitride on Carbon Nanotube

19.3.2 Effects of Mechanical Deformation on Outer Surface

Reactivity of Carbon Nanotubes

19.3.3 Adsorption Con?guration of Magnesium on Wurtzite

Gallium Nitride Surface Using First-principles Calculations

19.4 Nano-welding by RF Heating

19.5 Chapter Summary

References

Appendix

Summary of Continuous Mechanics

Index

随便看

 

霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。

 

Copyright © 2002-2024 101bt.net All Rights Reserved
更新时间:2025/5/1 2:13:02