近世代数也称抽象代数,是现代数学的重要基础,主要研究群、环、域等代数结构。本书出自抽象代数领域的两位巨匠之手,曾对近世代数教学产生深远的影响,帮助了几代学子理解和掌握近世代数,至今本书仍是一部对自学和课堂教学都极具价值的参考书和教材。作者用大家热悉且具体的例子来阐述每一个概念,深入浅出,透彻简洁。为了培养学生独立思考的能力,每个专题都包括丰富的练习。
网站首页 软件下载 游戏下载 翻译软件 电子书下载 电影下载 电视剧下载 教程攻略
书名 | 近世代数概论(英文版第5版)/图灵原版数学统计学系列 |
分类 | 科学技术-自然科学-数学 |
作者 | (美)伯克霍夫//(美)麦克莱恩 |
出版社 | 人民邮电出版社 |
下载 | ![]() |
简介 | 编辑推荐 近世代数也称抽象代数,是现代数学的重要基础,主要研究群、环、域等代数结构。本书出自抽象代数领域的两位巨匠之手,曾对近世代数教学产生深远的影响,帮助了几代学子理解和掌握近世代数,至今本书仍是一部对自学和课堂教学都极具价值的参考书和教材。作者用大家热悉且具体的例子来阐述每一个概念,深入浅出,透彻简洁。为了培养学生独立思考的能力,每个专题都包括丰富的练习。 内容推荐 本书出自近世代数领域的两位科学巨匠之手,是一本经典的教材。全书共分为15章,内容包括:整数、多项式、实数、复数、矩阵代数、线性群、行列式和标准型、布尔代数和格、超限算术、环和理想、代数数域和伽罗华理论等。 本书曾帮助过几代人理解近世代数,至今仍是一本非常有价值的参考书和教材,适合数学专业及其他理工科专业高年级本科生和研究生使用。 目录 Preface to the Fourth Edition 1 The Integers 1.1 Commutative Rings; Integral Domains 1.2 Elementary Properties of Commutative Rings 1.3 Ordered Domains 1.4 Well-Ordering Principle 1.5 Finite Induction; Laws of Exponents 1.6 ivisibility 1.7 The Euclidean Algorithm 1.8 Fundamental Theorem of Arithmetic 1.9 Congruences 1.10 The Rings Zn 1.11 Sets, Functions, and Relations 1.12 Isomorphisms and Automorphisms 2 Rational Numbers and Fields 2.1 Definition of a Field 2.2 Construction of the Rationals 2.3 Simultaneous Linear Equations 2.4 Ordered Fields 2.5 Postulates for the Positive Integers 2.6 Peano Postulates 3 Polynomials 3.1 Polynomial Forms 3.2 Polynomial Functions 3.3 Homomorphisms of Commutative Rings 3.4 Polynomials in Several Variables 3.5 The Division Algorithm 3.6 Units and Associates 3.7 Irreducible Polynomials 3.8 Unique Factorization Theorem 3.9 Other Domains with Unique Factorization 3.10 Eisenstein's Irreducibility Criterion 3.11 Partial Fractions 4 Real Numbers 4.1 Dilemma of Pythagoras 4.2 Upper and Lower Bounds 4.3 Postulates for Real Numbers 4.4 Roots of Polynomial Equations 4.5 Dedekind Cuts 5 Complex Numbers 5.1 Definition 5.2 The Complex Plane 5.3 Fundamental Theorem of Algebra 5.4 Conjugate Numbers and Real Polynomials 5.5 Quadratic and Cubic Equations 5.6 Solution of Quartic by Radicals 5.7 Equations of Stable Type 6 Groups 6.1 Symmetries of the Square 6.2 Groups of Transformations 6.3 Further Examples 6.4 Abstract Groups 6.5 Isomorphism 6.6 Cyclic Groups 6.7 Subgroups 6.8 Lagrange's Theorem 6.9 Permutation Groups 6.10 Even and Odd Permutations 6.11 Homomorphisms 6.12 Automorphisms; Conjugate Elements 6.13 Quotient Groups 6.14 Equivalence and Congruence Relations 7 Vectors and Vector Spaces 7.1 Vectors in a Plane 7.2 Generalizations 7.3 Vector Spaces and Subspaces 7.4 Linear Independence and Dimension 7.5 Matrices and Row-equivalence 7.6 Tests for Linear Dependence 7.7 Vector Equations; Homogeneous Equations 7.8 Bases and Coordinate Systems 7.9 Inner Products 7.10 Euclidean Vector Spaces 7.11 Normal Orthogonal Bases 7.12 Quotient-spaces 7.13 Linear Functions and Dual Spaces 8 The Algebra of Matrices 8.1 Linear Transformations and Matrices 8.2 Matrix Addition 8.3 Matrix Multiplication 8.4 Diagonal, Permutation, and Triangular Matrices 8.5 Rectangular Matrices 8.6 Inverses 8.7 Rank and Nullity 8.8 Elementary Matrices 8.9 Equivalence and Canonical Form 8.10 Bilinear Functions and Tensor Products 8.11 Quaternions 9 Linear Groups 9.1 Change of Basis 9.2 Similar Matrices and Eigenvectors 9.3 The Full Linear and Affine Groups 9.4 The Orthogonal and Euclidean Groups 9.5 Invariants and Canonical Forms 9.6 Linear and Bilinear Forms 9.7 Quadratic Forms 9.8 Quadratic Forms Under the Full Linear Group 9.9 Real Quadratic Forms Under the Full Linear Group 9.10 Quadratic Forms Under the Orthogonal Group 9.11 Quadrics Under the Affine and Euclidean Groups 9.12 Unitary and Hermitian Matrices 9.13 Affine Geometry 9.14 Projective Geometry 10 Determinants and Canonical Forms 10.1 Definition and Elementary Properties of Determinants 10.2 Products of Determinants 10.3 Determinants as Volumes 10.4 The Characteristic Polynomial 10.5 The Minimal Polynomial 10.6 Cayley-Hamilton Theorem 10.7 Invariant Subspaces and Reducibility 10.8 First Decomposition Theorem 10.9 Second Decomposition Theorem 10.10 Rational and Jordan Canonical Forms 11 Boolean Algebras and Lattices 11.1 Basic Definition 11.2 Laws: Analogy with Arithmetic 11.3 Boolean Algebra 11.4 Deduction of Other Basic Laws 11.5 Canonical Forms of Boolean Polynomials 11.6 Partial Orderings 11.7 Lattices 11.8 Representation by Sets 12 Transfinite Arithmetic 12.1 Numbers and Sets 12.2 Countable Sets 12.3 Other Cardinal Numbers 12.4 Addition and Multiplication of Cardinals 12.5 Exponentiation 13 Rings and Ideals 13.1 Rings 13.2 Homomorphisms 13.3 Quotient-rings 13.4 Algebra of Ideals 13.5 Polynomial Ideals 13.6 Ideals in Linear Algebras 13.7 The Characteristic of a Ring 13.8 Characteristics of Fields 14 Algebraic Number Fields 14.1 Algebraic and Transcendental Extensions 14.2 Elements Algebraic over a Field 14.3 Adjunction of Roots 14.4 Degrees and Finite Extensions 14.5 Iterated Algebraic Extensions 14.6 Algebraic Numbers 14.7 Gaussian Integers 14.8 Algebraic Integers 14.9 Sums and Products of Integers 14.10 Factorization of Quadratic Integers 15 Galois Theory 15.1 Root Fields for Equations 15.2 Uniqueness Theorem 15.3 Finite Fields 15.4 The Galois Group 15.5 Separable and Inseparable Polynomials 15.6 Properties of the Galois Group 15.7 Subgroups and Subfields 15.8 Irreducible Cubic Equations 15.9 Insolvability of Quintic Equations Bibliography List of Special Symbols Index |
随便看 |
|
霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。