![]()
内容推荐 本书是量子力学的世界经典教材,内容丰富,结构严谨,逻辑性强。作者从所需的数学基础开始,先复习经典力学,再通过一些实验事实说明经典物理学遇到的困难和引入量子理论的必要性,然后详细阐述量子力学的基本原理及其进一步发展,给出实际问题的具体解决方法和处理过程。本书叙述简明易懂,数学推导和例题分析详细,并附有大量的习题及其答案,是学习量子力学的理想教材。 在第2版中,作者做了全面的修订和补充,例如重写了数学基础部分,讨论了时间反演不变性,并多加了讨论路径积分的一个新章节(第21章:Path Integrals--II)。新版的亮点有:(1)量子力学的数学基础部分更加清晰明了;(2)充分回顾牛顿力学、拉格朗日力学和哈密顿力学,从而帮助学习者更好地理解量子力学与经典力学的不同之处;(3)通过数学定理和物理假设的分开处理加深读者对量子理论的理解;(4)深入讨论路径积分及其在现代物理学中的重要性。 目录 1. Mathematical Introduction l.l. Linear Vector Spaces: Basics 1.2. Inner Product Spaces 1.3. Dual Spaces and the Dirac Notation 1.4. Subspaces 1.5. Linear Operators 1.6. Matrix Elements of Linear Operators 1.7. Active and Passive Transformations 1.8. The Eigenvalue Problem 1.9. Functions of Operators and Related Concepts 1.10. Generalization to Infinite Dimensions 2. Review of Classical Mechanics 2.1. The Principle of Least Action and Lagrangian Mechanics 2.2. The Electromagnetic Lagrangian 2.3. The Two-Body Problem 2.4. How Smart Is a Particle? 2.5. The Hamiltonian Formalism 2.6. The Electromagnetic Force in the Hamiltonian Scheme 2.7. Cyclic Coordinates, Poisson Brackets, and Canonical Transformations 2.8. Symmetries and Their Consequences 3. All Is Not Well with Classical Mechanics 3.1. Particles and Waves in Classical Physics 3.2. An Experiment with Waves and Particles (Classical) 3.3. The Double-Slit Experiment with Light 3.4. Matter Waves (de Broglie Waves) 3.5. Conclusions 4. The Postulates -- a General Discussion 4.1. The Postulates 4.2. Discussion of Postulates I-III 4.3. The Schrodinger Equation (Dotting Your i's and Crossing your h's) 5. Simple Problems in One Dimension 5.1. The Free Particle 5.2. The Particle in a Box 5.3. The Continuity Equation for Probability 5.4. The Single-Step Potential: a Problem in Scattering 5.5. The Double-Slit Experiment 5.6. Some Theorems 6. The Classical Limit 7. The Harmonic Oscillator 7.1. Why Study the Harmonic Oscillator? 7.2. Review of the Classical Oscillator 7.3. Quantization of the Oscillator (Coordinate Basis) 7.4. The Oscillator in the Energy Basis 7.5. Passage from the Energy Basis to the X Basis 8. The Path Integral Formulation of Quantum Theory 8.1. The Path Integral Recipe 8.2. Analysis of the Recipe 8.3. An Approximation to U(t) for the Free Particle 8.4. Path Integral Evaluation of the Free-Particle Propagator 8.5. Equivalence to the Schrodinger Equation 8.6. Potentials of the Form V= a + bx + cx2 + dx + exx 9. The Heisenberg Uncertainty Relations 9.1. Introduction 9.2. Derivation of the Uncertainty Relations 9.3. The Minimum Uncertainty Packet 9.4. Applications of the Uncertainty Principle 9.5. The Energy-Time Uncertainty Relation 10. Systems with N Degrees of Freedom 10.1. N Particles in One Dimension 10.2. More Particles in More Dimensions 10.3. Identical Particles 11. Symmetries and Their Consequences 11.1. Overview 11.2. Translational Invariance in Quantum Theory 11.3. Time Translational Invariance 11.4. Parity Invariance 11.5. Time-Reversal Symmetry 12. Rotational Invariance and Angular Momentum 12.1. Translations in Two Dimensions 12.2. Rotations in Two Dimensions 12.3. The Eigenvalue Problem of L 12.4. Angular Momentum in Three Dimensions 12.5. The Eigenvalue Problem of L2 and L 12.6. Solution of Rotationally Invariant Problems 13. The Hydrogen Atom 13.1. The Eigenvalue Problem 13.2. The Degeneracy of the Hydrogen Spectrum 13.3. Numerical Estimates and Comparison with Experiment 13.4. Multielectron Atoms and the Periodic Table 14. Spin 14.1. Introduction 14.2. What is the Nature of Spin? 14.3. Kinematics of Spin 14.4. Spin Dynamics 14.5. Return of Orbital Degrees of Freedom 15. Addition of Angular Momenta 15.1. A Simple Example 15.2. The General Problem 15.3. Irreducible Tensor Operators 15.4. Explanation of Some "Accidental" Degeneracies 16. Variational and WKB Methods 16.1. The Variational Method 16.2. The Wentzel-Kramers-Brillouin Method 17. Time-Independent Perturbation Theory 17.1. The Formalism 17.2. Some Examples 17.3. Degenerate Perturbation Theory 18. Time-Dependent Perturbation Theory 18.1. The Problem 18.2. First-Order Perturbation Theory 18.3. Higher Orders in Perturbation Theory 18.4 |