内容推荐 本书从不同的角度来探讨Teichmüller理论和Grothendieck的dessins d'enfants (一种图嵌入)理论,既包括两种理论间的关系,也包括它们与其他几何学主题的关系。书中讨论了Riemann曲面及其模理论、复几何和低维拓扑中的一些基本问题,旨在为读者提供有关这些主题的重要参考资料。本书适合低维拓扑、组合群论、复分析和代数几何等相关领域的研究人员和研究生阅读,也可供对这些领域之间的相互作用感兴趣的读者参考。 目录 Toward Complex Geometry of Teichmüller Space with Extremal Length Geometry—A Complex Chart Associated with Extremal Length Variational Formulas for Principal Functions and Applications Properties of Quasisymmetric Homeomorphisms in the Weil-Petersson Class Diophantine Approximation and Lattice Actions on the Clifford Plane On Relations among Multiple Zeta Values Obtained in Knot Theory Penner Coordinates for Closed Surfaces Applications of the Dynnikov Coordinate System on the Boundary of Teichmüller Space Motions of Limit Sets: A Survey Symmetric Groups and Checker Triangulated Surfaces On Real and Singular Nerves of Moduli Space of Compact Riemann Surfaces Calabi-Yau Varieties: from Quiver Representations to Dessins d'Enfants Hurwitz Groups as Monodromy Groups of Dessins: SeveralExamples Differential Relations for Almost Belyi Maps Belyi Pairs in the Critical Filtrations of Hurwitz Spaces |