概率图模型(原理与应用全彩英文版香农信息科学经典)豆瓣PDF电子书bt网盘迅雷下载电子书下载-霍普软件下载网

网站首页   软件下载   游戏下载   翻译软件   电子书下载   电影下载   电视剧下载   教程攻略   音乐专区

请输入您要查询的图书:

霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。

电子书 概率图模型(原理与应用全彩英文版香农信息科学经典)
分类 电子书下载
作者 (墨)路易斯·恩里克·苏卡
出版社 世界图书出版公司
下载 暂无下载
介绍
内容推荐
本书从工程的角度概述了概率图模型(PGMs)。书本涵盖了PGMs每种主要类别的基础知识,包括表示、推理和学习原则,并回顾了每种类型的模型在现实世界中的应用。这些应用来自广泛的学科,突出了贝叶斯分类器、隐马尔可夫模型、贝叶斯网络、动态和时间贝叶斯网络、马尔可夫随机场、影响图和马尔可夫决策过程的许多用途。本书特色:提出了包括PGMs所有主要类别的统一框架;介绍了不同技术的实际应用;该领域研究的最新发展,包括多维贝叶斯分类器、关系图模型和因果模型;每一章的末尾都附有练习、进一步阅读的建议和研究或编程项。
目录
Part I Fundamentals
1 Introduction
1.1 Uncertainty
1.1.1 Effects of Uncertainty
1.2 A Brief History
1.3 Basic Probabilistic Models
1.3.1 An Example
1.4 Probabilistic Graphical Models
1.5 Representation, Inference, and Learning
1.6 Applications
1.7 Overview of the Book
1.8 Additional Reading
References
2 Probability Theory
2.1 Introduction
2.2 Basic Rules
2.3 Random Variables
2.3.1 Two-Dimensional Random Variables
2.4 Information Theory
2.5 Additional Reading
2.6 Exercises
Reference
3 Graph Theory
3.1 Definitions
3.2 Types of Graphs
3.3 Trajectories and Circuits
3.4 Graph Isomorphism
3.5 Trees
3.6 Cliques
3.7 Perfect Ordering
3.8 Ordering and Triangulation Algorithms
3.8.1 Maximum Cardinality Search
3.8.2 Graph Filling
3.9 Additional Reading
3.10 Exercises
Reference
Part II Probabilistic Models
4 Bayesian Classifiers
4.1 Introduction
4.1.1 Classifier Evaluation
4.2 Bayesian Classifier
4.2.1 Naive Bayes Classifier
4.3 Alternative Models: TAN, BAN
4.4 Semi-Naive Bayesian Classifiers
4.5 Multidimensional Bayesian Classifiers
4.5.1 Multidimensional Bayesian Network Classifiers
4.5.2 Bayesian Chain Classifiers
4.6 Hierarchical Classification
4.6.1 Chained Path Evaluation
4.7 Applications
4.7.1 Visual Skin Detection
4.7.2 HIV Drug Selection
4.8 Additional Reading
4.9 Exercises
References
5 Hidden Markov Models
5.1 Introduction
5.2 Markov Chains
5.2.1 Parameter Estimation
5.2.2 Convergence
5.3 Hidden Markov Models
5.3.1 Evaluation
5.3.2 State Estimation
5.3.3 Learning
5.3.4 Extensions
5.4 Applications
5.4.1 PageRank
5.4.2 Gesture Recognition
5.5 Additional Reading
5.6 Exercises
References
6 Markov Random Fields
6.1 Introduction
6.2 Markov Networks
6.2.1 Regular Markov Random Fields
6.3 Gibbs Random Fields
6.4 Inference
6.5 Parameter Estimation
6.5.1 Parameter Estimation with Labeled Data
6.6 Conditional Random Fields
6.7 Applications
6.7.1 Image Smoothing
6.7.2 Improving Image Annotation
6.8 Additional Reading
6.9 Exercises
References
7 Bayesian Networks: Representation and Inference
7.1 Introduction
7.2 Representation
7.2.1 Structure
7.2.2 Parameters
7.3 Inference
7.3.1 Singly Connected Networks: Belief Propagation
7.3.2 Multiple Connected Networks
7.3.3 Approximate Inference
7.3.4 Most Probable Explanation
7.3.5 Continuous Variables
7.4 Applications
7.4.1 Information Validation
7.4.2 Reliability Analysis
7.5 Additional Reading
7.6 Exercises
References
8 Bayesian Networks: Learning
8.1 Introduction
8.2 Parameter Learning
8.2.1 Smoothing
8.2.2 Parameter Uncertainty
8.2.3 Missing Data
8.2.4 Discretization
8.3 Structure Learning
8.3.1 Tree Learning
8.3.2 Learning a Polytree
8.3.3 Search and Score Techniques
8.3.4 Independence Tests Techniques
8.4 Combining Expert Knowledge and Data
8.5 Applications
8.5.1 Air Pollution Model for Mexico City
8.6 Additional Reading
8.7 Exercises
References
9 Dynamic and Temporal Bayesian Networks
9.1 Introduction
9.2 Dynamic Bayesian Networks
9.2.1 Inference
9.2.2 Learning
9.3 Temporal Event Networks
9.3.1 Temporal Nodes Bayesian Networks
9.4 Applications
9.4.1 DBN: Gesture Recognition
9.4.2 TNBN: Predicting HIV Mutational Pathways
9.5 Additional Reading
9.6 Exercises
截图
随便看

免责声明
本网站所展示的内容均来源于互联网,本站自身不存储、不制作、不上传任何内容,仅对网络上已公开的信息进行整理与展示。
本站不对所转载内容的真实性、完整性和合法性负责,所有内容仅供学习与参考使用。
若您认为本站展示的内容可能存在侵权或违规情形,请您提供相关权属证明与联系方式,我们将在收到有效通知后第一时间予以删除或屏蔽。
本网站对因使用或依赖本站信息所造成的任何直接或间接损失概不承担责任。联系邮箱:101bt@pm.me