网站首页 软件下载 游戏下载 翻译软件 电子书下载 电影下载 电视剧下载 教程攻略
书名 | 现代几何学--方法和应用(第1卷曲面几何变换群与场第2版英文版)(精)/俄罗斯数学经典 |
分类 | 科学技术-自然科学-数学 |
作者 | (俄罗斯)鲍里斯·杜布罗文//阿纳托利·福缅科//谢尔盖·诺维科夫 |
出版社 | 世界图书出版公司 |
下载 | |
简介 | 内容推荐 本书是莫斯科大学数学力学系经典教材《现代几何学——方法和应用》三卷本的第1卷。全书力求以直观的和物理的视角阐述,是一本难得的现代几何方面的佳作。整套书内容包括张量分析、曲线和曲面几何、一维和高维变分法(第1卷),微分流形的拓扑和几何(2卷),以及同调与上同调理论(第3卷)。本书可用作数学和理论物理专业高年级和研究生的教学用书,对从事几何和拓扑研究的工作者也极具参考价值。 目录 Preface to the First Edition CHAPTER 1 Geometry in Regions of a Space.Basic Concepts 1.Co-ordinate systems 1.1 Cartesian co-ordinates in a space 1.2 Co-ordinate changes 2.Euclidean space 2.1 Curves in Euclidean space 2.2 Quadratic forms and vectors 3.Riemannian and pseudo-Riemannian spaces 3.1 Riemannian metrics 3.2 The Minkowski metric 4.The simplest groups of transformations of Euclidean space 4.1 Groups of transformations of a region 4.2 Transformations of the plane 4.3 The isometries of 3-dimensional Euclidean space 4.4 Further examples of transformation groups 4.5 Exercises 5.The Serret-Frenet formulae 5.1 Curvature of curves in the Euclidean plane 5.2 Curves in Euclidean 3-space.Curvature and torsion 5.3 Orthogonal transformations depending on a parameter 5.4 Exercises 6.Pseudo-Euclidean spaces 6.1 The simplest concepts of the special theory of relativity 6.2 Lorentz transformations 6.3 Exercises CHAPTER 2 The Theory of Surfaces 7.Geometry on a surface in space 7.1 Co-ordinates on a surface 7.2 Tangent planes 7.3 The metric on a surface in Euclidean space 7.4 Surface area 7.5 Exercises 8.The second fundamental form 8.1 Curvature of curves on a surface in Euclidean space 8.2 Invariants of a pair of quadratic forms 8.3 Properties of the second fundamental form 8.4 Exercises 9.The metric on the sphere 10.Space-like surfaces in pseudo-Euclidean space 10.1 The pseudo-sphere 10.2 Curvature of space-like curves in R 11.The language of complex numbers in geometry 11.1 Complex and real co-ordinates 11.2 The Hermitian scalar product 11.3 Examples of complex transformation groups 12.Analytic functions 12.1 Complex notation for the element of length, and for the differential of a function 12.2 Complex co-ordinate changes 12.3 Surfaces in complex space 13.The conformal form of the metric on a surface 13.1 Isothermal co-ordinates.Gaussian curvature in terms of conformal co-ordinates 13.2 Conformal form of the metrics on the sphere and the Lobachevskian plane 13.3 Surfaces of constant curvature 13.4 Exercises 14.Transformation groups as surfaces in N-dimensional space 14.1 Co-ordinates in a neighbourhood of the identity 14.2 The exponential function with matrix argument 14.3 The quaternions 14.4 Exercises 15.Conformal transformations of Euclidean and pseudo-Euclidean spaces of several dimensions CHAPTER 3 Tensors: The Algebraic Theory 16.Examples of tensors 17.The general definition of a tensor 17.1 The transformation rule for the components of a tensor of arbitrary rank 17.2 Algebraic operations on tensors 17.3 Exercises 18.Tensors of type (0,k) 18.1 Differential notation for tensors with lower indices only 18.2 Skew-symmetric tensors of type (0, k) 18.3 The exterior product of differential forms.The exterior algebra 18.4 Skew-symmetric tensors of type (k, 0)(polyvectors).Integrals with respect to anti-commuting variables 18.5 Exercises 19.Tensors in Riemannian and pseudo-Riemannian spaces 19.1 Raising and lowering indices 19.2 The eigenvalues of a quadratic form 19.3 The operator 19.4 Tensors in Euclidean space 19.5 Exercises 20.The crystallographic groups and the finite subgroups of the rotation group of Euclidean 3-space.Examples of invariant tensors 21.Rank 2 tensors in pseudo-Euclidean space, and their eigenvalues 21.1 Skew-symmetric tensors.The invariants of an electromagnetic field 21.2 Symmetric tensors and their eigenvalues.The energy-momentum tensor of an electromagnetic feltauvs. v 22.The behaviour of tensors under mappings 22.1 The general operation of restriction of tensors with lower indices 22.2 |
随便看 |
|
霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。