网站首页 软件下载 游戏下载 翻译软件 电子书下载 电影下载 电视剧下载 教程攻略
书名 | 多元实函数教程(英文)/国外优秀数学著作原版系列 |
分类 | 科学技术-自然科学-数学 |
作者 | (美)马丁·莫斯科维茨//福蒂奥斯·帕里奥詹尼斯 |
出版社 | 哈尔滨工业大学出版社 |
下载 | ![]() |
简介 | 内容推荐 本书的主题是众多学科的基础,因此对低年级数学研究生,以及数学、物理学、化学、生物学、工程学甚至经济学专业的高年级本科生都有用。本书包括8章,第1章和第2章处理了欧几里得空间的基本的几何与拓扑内容;第3章处理了微分学内容;第4,5和6章是关于多变量的积分学的内容。本书有两个新奇的特征:第7章是基本但非常重要的常微分方程和二阶经典偏微分方程的相关内容;第8章深入介绍了变分法,它被视为类似于多变量微积分中常见的极值问题。 目录 Preface and Acknowledgments Notations 1 Basic Features of Euclidean Space, Rn 1.1 Real numbers 1.1.1 Convergence of sequences of real numbers 1.2 Rn as a vector space 1.3 Rn as an inner product space 1.3.1 The inner product and norm in Rn 1.3.2 Orthogonality 1.3.3 The cross product in R3 1.4 Rn as a metric space 1.5 Convergence of sequences in Rn 1.6 Compactness 1.7 Equivalent norms (*) 1.8 Solved problems for Chapter 1 2 Functions on Euclidean Spaces 2.1 Functions from Rn to Rm 2.2 Limits of functions 2.3 Continuous functions 2.4 Linear transformations 2.5 Continuous functions on compact sets 2.6 Connectedness and convexity 2.6.1 Connectedness 2.6.2 Path-connectedness 2.6.3 Convex sets 2.7 Solved problems for Chapter 2 3 Differential Calculus in Several Variables 3.1 Differentiable functions 3.2 Partial and directional derivatives, tangent space 3.3 Homogeneous functions and Euler's equation 3.4 The mean value theorem 3.5 Higher order derivatives 3.5.1 The second derivative 3.6 Taylor's theorem 3.6.1 Taylor's theorem in one variable 3.6.2 Taylor's theorem in several variables 3.7 Maxima and minima in several variables 3.7.1 Local extrema for functions in several variables 3.7.2 Degenerate critical points 3.8 The inverse and implicit function theorems 3.8.1 The Inverse Function theorem 3.8.2 The Implicit Function theorem 3.9 Constrained extrema, Lagrange multipliers 3.9.1 Applications to economics 3.10 Functional dependence 3.11 Morse's leInma (*) 3.12 Solved problems for Chapter 3 4 Integral Calculus in Several Variables 4.1 The integral in Rn 4.1.1 Darboux sums. Integrability condition 4.1.2 The integral over a bounded set 4.2 Properties of multiple integrals 4.3 Fubini's theorern 4.3.1 Center of mass, centroid, moment of inertia 4.4 Smooth Urysohn's lemma and partition of unity (*) 4.5 Sard's theorem (*) 4.6 Solved problems for Chapter 4 5 Change of Variables Formula, Improper Multiple Integrals 5.1 Change of variables formula 5.1.1 Change of variables; linear case 5.1.2 Change of variables; the general case 5.1.3 Applications, polar and spherical coordinates 5.2 Improper multiple integrals 5.3 Functions defined by integrals 5.3.1 Functions defined by improper integrals 5.3.2 Convolution of functions 5.4 The Weierstrass approximation theorem (*) 5.5 The Fourier transform (*) 5.5.1 The Schwartz space 5.5.2 The Fourier transform on Rn 5.6 Solved problems for Chapter 5 6 Line and Surface Integrals 6.1 Arc-length and Line integrals 6.1.1 Paths and curves 6.1.2 Line integrals 6.2 Conservative vector fields and Poincare's lemma 6.3 Surface area and surface integrals 6.3.1 Surface area 6.3.2 Surface integrals 6.4 Green's theorem and the divergence theorem in R2 6.4.1 The divergence theorem in R2 6.5 The divergence and curl 6.6 Stokes' theorem 6.7 The divergence theorem in R3 6.8 Differential forms (*) 6.9 Vector fields on spheres and Brouwer fixed point theorem (*) 6.9.1 Tangential vector fields on spheres 6.9.2 The Brouwer fixed point theorem 6.10 Solved problems for Chapter 6 7 Elements of Ordinary and Partial Differential Equations 7.1 Introduction 7.2 First order differential equations 7.2.1 Linear first order ODE 7.2.2 Equations with variables separated 7.2.3 Homogeneous equations 7.2.4 Exact equations 7.3 Picard's theorem (*) 7.4 Second order differential equations 7.4.1 Linear second order ODE with constant coefficients 7.4.2 Special types of second order ODE; reduction of order 7.5 Higher order ODE and systems of ODE 7.6 Some more advanced topics in ODE (*) 7.6. |
随便看 |
|
霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。