网站首页 软件下载 游戏下载 翻译软件 电子书下载 电影下载 电视剧下载 教程攻略
书名 | 辐射技术与先进材料(英文版) |
分类 | 科学技术-工业科技-化学工业 |
作者 | 吴国忠翟茂林汪谟贞 |
出版社 | 上海交通大学出版社 |
下载 | |
简介 | 内容推荐 本书为“核能与核技术出版工程”之一,主要内容包括:利用辐射技术研制高性能碳纤维、碳化硅纤维、超高分子量聚乙烯纤维和功能纺织品的研究与应用进展;基于辐射交联技术制备交联电线电缆、热收缩材料和改进橡胶硫化工艺;运用辐射交联技术研制交联发泡材料;辐射技术在制造聚合物超细粉体材料方面的应用与前景;辐射乳液聚合技术的研究与应用;辐射技术在研制聚合物离子交换膜、功能化石墨烯、聚合物多孔材料和纳米材料方面的研究进展。 目录 Chapter One Radiation Sources and Radiation Processing 1.1 Basic principles of radiation application for advanced material development 1.2 Gamma ray 1.3 Electron beam accelerator 1.3.1 High energy (10 MeV) electron beam accelerator 1.3.2 Middle energy (-5 MeV) electron beam accelerator 1.3.3 Middle energy (1 - 3 MeV) electron beam accelerator 1.3.4 Low-energy (100 - 500 keV) electron beam accelerator Reference Chapter Two Radiation Technology Application in High-Performance Fibers and Functional Textiles 2.1 Radiation application in carbon fibers and silicon carbide fibers 2.1.1 Carbon fibers 2.1.2 Silicon carbide fibers 2.2 Radiation-induced surface modification in advanced fiber composites 2.2.1 High-performance fibers and composites 2.2.2 Radiation modification of aramid fibers 2.2.3 Radiation modification of carbon fiber 2.3 Radiation grafting and application of ultrahigh molecular weight polyethylene fiber 2.3.1 Radiation effects on ultrahigh molecular weight polyethylene fiber 2.3.2 Preparation of amidoxime-based UHMWPE fibrous adsorbent for extraction of uranium from seawater 2.3.3 Preparation of highly durable conductive UHMWPE fibers 2.4 Preparation of functional textiles by radiation grafting 2.4.1 Types and preparation methods of functional textiles 2.4.2 Advantages of preparing functional textiles by radiation grafting 2.4.3 Current status of preparation of functional textiles by radiation grafting References Chapter Three Radiation Cross-Linking and Its Application 3.1 Radiation cross-linked wire/cable and heat-shrinkable materials 3.1.1 Radiation cross-linked wire/cable 3.1.2 Radiation cross-linked heat-shrinkable materials 3.2 Radiation cross-linked polyolefin shrink film 3.3 Application of radiation vulcanization in rubber and tires 3.3.1 Radiation vulcanization of rubber 3.3.2 Application of radiation technology in tires 3.4 Radiation vulcanization of natural rubber latex and synthetic rubber latex 3.4.1 Radiation vulcanization of natural rubber latex 3.4.2 Radiation vulcanization of synthetic rubber latex References Chapter Four Radiation Cross-Linking for Conventional and Supereritieal CO2 Foaming of Polymer 4.1 Introduction of microporous foaming material 4.2 Preparation of microporous polymers using supercritical 4.3 Supercritical CO2 foaming of rubber and ester polymer 4.4 Radiation cross-linking foaming technology 4.4.1 Radiation cross-linking for the polymer of foaming 4.4.2 Radiation cross-linking foaming 4.4.3 Radiation cross-linking foaming of polypropylene References Chapter Five Radiation Degrmtation or Modification of Polytetrafluoroethylene and Natural Polymers 5.1 Radiation degradation, cross-linking, and surface modification of polytetrafluoroethylene 5.1.1 Structure and properties of polytetrafluoroethylene 5.1.2 Radiation degradation and cross-linking of polytetrafluoroethylene 5.1.3 Surface modification of polytetrafluoroethylene 5.2 Polymer uhrafine powder fabrication by radiation 5.2.1 Polytetrafluoroethylene ultrafine powder 5.2.2 Other ultrafine powders 5.3 Radiation modification of polysaccharides and their derivatives 5.3.1 Radiation grafting and applications 5.3.2 Radiation cross-linking and application References Chapter Six Radiation Emulsion Polymerization 6.1 Emulsion polymerization 6.l.1 History and features of emulsion polymerization 6.1.2 Fundamental theory of emulsion polymerization 6.1.3 Radiation emulsion polymerization 6.2 Typical application examples of radiation emulsion polymerization 6.2.1 Radiation emulsion polymerization of vinyl acetate 6.2.2 Preparation of polymer composite by radiation emulsion polymerization 6.2.3 Radiation emulsion copolymerization 6.2.4 Radiation emulsifier-free emulsion polymerization 6.2.5 Other progress in radiation emulsion polymerization 6.3 Pigment printing hinder prepared by radiation emulsion polymerization 6.3.1 Representative basic formula for pigment printing hinder 6.3.2 Processing 6.4 Polyacrylate thickeners prepared by radiation emulsion polymerization 6.4.1 Typical basic formula 6.4.2 Operation flow 6.5 Advantages and disadvantages of radiation emulsion polymerization technique References Chapter Seven Radiation-Grafted Membranes for Applications in Renewable Energy Technology 7.1 Ion-exchange membrane and radiation-induced grafting copolymerization 7.1.1 Ion-exchange membrane 7.1.2 Methods of radiation-induced copolymerization 7.2 Nature of polymer matrix 7.3 Radiation-grafted membrane 7.3.1 Cation-exchange membrane 7.3.2 Anion-exchange membrane 7.3.3 Amphoteric ion-exchange membrane 7.4 Applications in renewable energy technology 7.4.1 Radiation-grafted membrane for vanadium redox battery 7.4.2 Radiation-grafted membrane for fuel cell 7.4.3 Application of radiation-grafted film in proton exchange membrane fuel cells 7.4.4 Application of radiation-grafted membranes in alkaline ftiel cells References Chapter Eight Radiation Preparation or Application of Graphene, Nanonaterials, Porous Polymeric Materials, and Ionic Liquids 8.1 Radiation preparation and application of graphene and its nanocomposites 8.1.1 Preparation and application of radiation-reduced graphene oxide 8.1.2 Radiation preparation and application of graphene-metal nanocomposites 8.1.3 Radiation preparation and application of graphene-polymer nanocomposites 8.1.4 Radiation preparation and application of graphene oxide-polymer nanocomposites 8.2 Preparation of nanomaterials by radiation technology 8.2.1 Preparation of metal nanoparticles 8.2.2 Preparation of nanocomposite materials 8.3 Preparation of porous polymeric materials using radiation technique 8.3.1 Porous polymeric microspheres prepared via radiation-initiated seeded emulsion polymerization 8.3.2 Interconnected porous polymer materials prepared via radiation-initiated polymerization in high internal phase emulsions 8.4 Radiation effects of ionic liquids 8.4.1 Radiation effect on imidazolium ionic liquids 8.4.2 Radiation effect on imidazolium ionic liquid extraction systems 8.4.3 Influence of radiation on the extraction ability of ionic liquid extraction systems 8.4.4 Radiation synthesis of poly(ionic liquids) gels for metal ion removal References Index |
随便看 |
|
霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。