章绪论
1.1社交媒体
1.1.1社交媒体概念
1.1.2主流社交媒体
1.1.3社交媒体特性
1.2社交媒体挖掘
1.2.1社交媒体挖掘概述
1.2.2社交媒体挖掘应用
1.3社交媒体内容安全挖掘
1.3.1社交媒体虚假消息挖掘
1.3.2社交媒体水军与马甲识别
1.3.3社交媒体去匿名化挖掘
1.3.4社交媒体社团挖掘
1.4本书主要内容
本章参考文献
第2章社交媒体挖掘基本理论与方法
2.1概述
2.2社交网络分析
2.3支持向量机
2.4贝叶斯学习
2.4.1朴素贝叶斯
2.4.2概率图模型
2.5决策树学习
2.5.1决策树
2.5.2随机森林
2.5.3梯度提升决策树
2.6神经网络
2.6.1BP神经网络模型
2.6.2卷积神经网络
本章参考文献
第3章社交媒体虚假消息识别研究
3.1概述
3.2微博消息可信度评估因素
3.2.1概述
3.2.2评论特征
3.2.3实验与分析
3.3基于支持向量机的微博虚假消息检测
3.3.1基于支持向量机判别模型
3.3.2实验与分析
3.4基于用户等级特征的虚假消息检测
3.4.1特征工程
3.4.2实验与分析
3.5基于BP神经网络的虚假消息检测模型
3.5.1模型构建
3.5.2实验与分析
3.6基于注意力机制的虚假消息早期检测模型
3.6.1基于LSTM/GRU的文本特征表示
3.6.2基于注意力模型的虚假消息早期检测
3.6.3实验与分析
3.7小结
本章参考文献
第4章社交媒体虚假图像检测研究
4.1虚假图像检测概述
4.1.1背景介绍
4.1.2虚假图像检测方法
4.1.3图像统计特性检测
4.2虚假图像特征提取研究
4.2.1离散小波变换
4.2.2奇异值分解算法
4.3虚假图像被动认证检测方法研究
4.3.1复制添加型虚假图像
4.3.2基于离散小波变换和SVD的检测算法
4.3.3实验与分析
4.4小结
本章参考文献
第5章水军识别与马甲识别模型研究
5.1概述
5.2基于概率图模型的水军识别模型
5.2.1概述
5.2.2特征分析
5.2.3WGM模型构建
5.2.4实验与分析
5.3基于谱分析的水军团体识别模型
5.3.1概述
5.3.2用户关系图模型谱分析
5.3.3基于用户关系图谱特征定位电商水军团体
5.3.4实验与评价
5.4基于频繁子树的马甲识别模型
5.4.1概述
5.4.2基于频繁子树的马甲识别模型
5.4.3基于频繁子树的马甲识别实例分析
5.4.4实验与分析
5.5基于混合特征的马甲识别模型
5.5.1模型构建
5.5.2基于混合特征的马甲识别实例分析
5.5.3实验与分析
5.6小结
本章参考文献
第6章社交网络去匿名化方法研究
6.1去匿名化概述
6.1.1基于用户属性的去匿名化方法
6.1.2基于用户关系的去匿名化方法
6.2基于排序学习的去匿名化方法
6.2.1网络结构特征
6.2.2基于排序学习的去匿名化攻击方法
6.2.3实验与分析
6.3基于表示学习的去匿名化方法
6.3.1表示学习模型架构
6.3.2随机游走网络表示学习算法
6.3.3约束随机游走算法
6.3.4模型推导与参数训练
6.3.5实验与分析
6.4小结
本章参考文献
第7章社交媒体社团发现模型研究
7.1社团划分概述
7.1.1社团结构与社团划分
7.1.2基于全局结构的社团划分方法
7.1.3基于局部结构的社团划分方法
7.1.4经典算法时间复杂度比较
7.1.5算法局限性分析
7.2常用数据集与评价指标
7.2.1常用数据集
7.2.2评价指标
7.3基于节点向量表达的社团发现模型
7.3.1概述
7.3.2基于节点向量表达的社团划分算法
7.3.3启发式随机游走
7.3.4分布式节点表示向量生成
7.3.5聚类算法
7.3.6CDNEV算法
7.3.7实验与分析
7.4基于NCSS的社团发现混合模型
7.4.1概述
7.4.2NCSS算法
7.4.3实验与分析
7.5小结
本章参考文献
第8章研究总结