网站首页 软件下载 游戏下载 翻译软件 电子书下载 电影下载 电视剧下载 教程攻略
书名 | 中国伊朗编(英文版)(精)/Sinology系列 |
分类 | 人文社科-历史-中国史 |
作者 | (美)劳费尔 |
出版社 | 中西书局 |
下载 | ![]() |
简介 | 内容推荐 《中国伊朗编》内容首先是中国和古代西域植物的传播关系,其次是关于中亚纺织品、矿物和汉籍著录的伊朗目前萨珊王朝的官制。 作者简介 劳费尔,美籍德国藏学家。曾多次来中国科考。精通汉语、藏语及多种语言,是20世纪西方重要的汉学和东方学家之一。主要作品有《中国和欧洲的鸟形车》、《吐蕃的鸟卜》、《西藏文字的起源》等。 目录 Preface to second edition Preface to first edition 1.Introduction 1.1.Partial differential equations 1.2.Examples 1.2.1.Single partial differential equatioas 1.2.2.Systems of partial differential equations 1.3.Strategies for studying PDE 1.3.1, Well—posed problems, classical solutions 1.3.2.Weak solutions and regularity 1.3.3, Typical difficulties 1.4.Overview 1.5.Problems 1.6.References PART Ⅰ: REPRESENTATION FORMULAS FOR SOLUTIONS 2.Four Important Linear PDE 2.1.Transport equation 2.1.1.Initial—value problem 2.1.2.Nonhomogeneous problem 2.2.Laplace's equation 2.2.1.Fundamental solution 2.2.2.Mean—vahle formulas 2.2.3.Properties of harmonic functions 2.2.4.Green's fnnction 2.2.5.Energy methods 2.3.Heat equation 2.3.1.Fundamental solution 2.3.2.Mean—value formula 2.3.3.Properties of solutions 2.3.4.Energy methods 2.4.Wave equation 2.4.1.Solution by spherical means 2.4.2.Nonhomogeneous problem 2.4.3.Energy methods 2.5.Problems 2.6.References 3.Nonlinear First—Order PDE 3.1.Complete integrals, envelopes 3.1.1.Complete integrals 3.1.2.New solutions from envelopes 3.2.Characteristics 3.2.1.Derivation of characteristic ODE 3.2.2.Examples 3.2.3.Boundary conditions 3.2.4.Local solution 3.2.5.Applications 3.3.Introduction to Hamilton Jaeobi equations 3.3.1.Calculus of variations, Hamilton's ODE 3.3.2.Legendre transform, Hopf—Lax formula 3.3.3.Weak solutions, uniqueness 3.4.Introduction to conservation laws 3.4.1.Shocks, entropy condition 3.4.2.Lax Oleinik formula 3.4.3.Weak solutions, uniqueness 3.4.4.Riemann's problem 3.4.5.Long time behavior 3.5.Problems 3.6.References 4.Other Ways to Represent Solutions 4.1.Separation of variables 4.1.1.Examples 4.1.2.Application: Turing instability 4.2.Similarity solutions 4.2.1.Plane and traveling waves, solitons 4.2.2.Similarity under scaling 4.3.Transform methods 4.3.1.Fourier transform 4.3.2.Radon transform 4.3.3.Laplace transform 4.4.Converting nonlinear into linear PDE 4.4.1.Cole—Hopf transfornmation 4.4.2.Potential functions 4.4.3.Hodograph and Legendre transforms 4.5.Asymptotics 4.5.1.Singular perturbations 4.5.2.Laplace's method 4.5.3.Geometric optics, stationary phase 4.5.4.Homogenization 4.6.Power series 4.6.1.Noneharacteristic snrfaces 4.6.2.Real analytic functions 4.6.3.Cauehy—Kovalevskaya Theorem 4.7.Problems 4.8.References PART Ⅱ: THEORY FOR LINEAR PARTIAL DIFFERENTIAL EQUATIONS 5.Sobolev Spaces 5.1.Holder spaces 5.2.Sobolev spaces 5.2.1.Weak derivatives 5.2.2.Definition of Sobolev spaces 5.2.3.Elementary properties 5.3.Approximation 5.3.1.Interior approximation by smooth functions 5.3.2.Approximation by smooth functions 5.3.3.Global approximation by smooth functions 5.4.Extensions 5.5.Traces 5.6.Sobolev inequalities 5.6.1.Gagliardo Nirenberg Sobolev inequality 5.6.2.Morrey's inequality 5.6.3.General Sobolev inequalities 5.7.Compactness 5.8.Additional topics 5.8.1.Poincare's inequalities 5.8.2.Difference quotients 5.8.3.Differentiability a.e 5.8.4.Hardy's inequality 5.8.5.Fourier transform methods 5.9.Other spaces of functions 5.9.1.The space H—1 5.9.2.Spaces involving time 5.10.Problems 5.11.References 6.Second—Order Elliptic Equations 6.1.Definitions 6.1.1.Elliptic equations 6.1.2.Weak solutions 6.2.Existence of weak solutions 6.2.1.Lax—Milgram Theorem 6.2.2.Energy estimates 6.2.3.Fredhohn alternative 6.3.Regularity 6.3.1.Interior regularity 6.3.2.Boundary regularity 6.4.Maximum principles 6.4.1.Weak maximum principle 6.4.2.Strong maximum principle 6.4.3.Harnack's inequality 6.5.Eigenvalues and eigenfunctions 6.5.1.Eigenvalues of symmetric elliptic operators 6.5.2.Eigenvalues of nonsymmetric elliptic operators 6.6.Problems 6.7.References …… 7.Linear Evolution Equations PART Ⅲ: THEORY FOR NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS APPENDICES Bibliography Index |
随便看 |
|
霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。