《金兹堡-朗道方程》是关于金兹堡-朗道方程的一本专门著作。《金兹堡-朗道方程》共五张,主要介绍金兹堡-朗道方程的物理背景、一维及高维金兹堡-朗道方程的整体解及渐近性态、超导中的金兹堡-朗道方程以及金兹堡-朗道模型方程及其和调和映射的联系。《金兹堡-朗道方程》总结了今年来金兹堡-朗道方程的研究新成果,阅读《金兹堡-朗道方程》可使读者尽快进入这一研究领域的前沿。
Contents
Preface
Chapter 1 Background of Ginzburg-Landau Equations 1
1.1 The Benard convection 1
1.2 The Couette-Taylor flow 6
1.3 The plane Poiseuille flow 1□
1.4 The turbulent problem in chemical reaction 15
1.5 Transition from KS equation to Ginzburg-Landau equation □1
1.6 Ginzburg-Landau models in superconductivity □□
Chapter □ Global Solutions and Global Attractors for One Dimensional Ginzburg-Landau Equations □7
2.1 Global solutions and global attractors □7
2.2Analysis for traveling wave solutions 39
2.3 Instability of the quasi-periodic solutions 53
2.4 Nonlinear stability of the plane waves 64
2.5 Finite dimensional inertial manifolds 7□
2.6 Exponential attractors 89
2.7 Structure of the inertial manifolds 94
2.8 Gevrey regularity 117
2.9 Determining nodes 1□9
2.10 Dynamical system structure and numerical analysis 138
2.11 Slow periodic solutions 146
2.12Stability of traveling wave solutions 164
2.13 Upper bound estimates of winding numbers 176
2.14 Discrete attractors and their dimension estimates 186
2.15 Stability criterion for perturbed cubic-quintic nonlinear Schrodinger equations □06
2.16 Nonlinear instability of the plane waves □□9
Chapter 3 Global Solutions and Asymptotic Behavior for Higher Dimensional Ginzburg-Landau Equations □37
3.1 Global solutions □37
3.□ Cauchy problem in local spaces □75
3.3 Global attractors for □D case 307
3.4 The dynamical length 313
3.5 Hausdor measures of level sets of solutions 3□7
3.6 Global attractors for □D derivative Ginzburg-Landau equation 341
3.7 Gevrey regularity and approximate inertial manifolds 356
3.8 Global attractors for the case of unbounded domain 368
3.9 Time periodic solutions 383
3.10 Limits to nonlinear Schr.odinger equations 39□
3.11 Existence of almost periodic solutions 407
Chapter 4 Ginzburg-Landau Equations in Superconductivity 4□□
4.1 Cauchy problem 4□□
4.□ Global attractors 433
4.3 Hyperbolic Ginzburg-Landau Equations 440
4.4 Instability of symmetric vortices 446
Chapter 5 Ginzburg-Landau Model Equations 473
5.1 The case of deg(g,*Ω)=0 474
5.□ The case of deg(g,*Ω)≠0 500
5.3 Equations of Ginzburg-Landau heat flows 543
5.4 Ginzburg-Landau equations and mean curvature flows 559
References 588