第1章 人工智能快速入门 / 1
1.1 初识人工智能 / 2
1.1.1 什么是人工智能 / 2
1.1.2 为什么要学习人工智能 / 2
1.2 智能概述 / 4
1.2.1 智能类型 / 4
1.2.2 智能的组成 / 6
1.3 人工智能的研究与应用领域 / 8
1.3.1 专家系统 / 8
1.3.2 自然语言理解 / 9
1.3.3 机器学习 / 9
1.3.4 机器定理证明 / 10
1.3.5 自动程序设计 / 11
1.3.6 分布式人工智能 / 12
1.3.7 机器人学 / 13
1.3.8 模式识别 / 14
1.3.9 人机博弈 / 14
1.3.10 计算机视觉 / 15
1.3.11 软计算 / 15
1.3.12 智能控制 / 16
1.3.13 智能规划 / 17
1.4 人工智能的开发语言 / 18
1.4.1 为什么使用Python来开发人工智能 / 18
1.4.2 Python的下载和安装 / 18
1.4.3 Python程序的编写 / 21
1.4.4 利用量化交易平台编写Python程序 / 24
1.5 人工智能的发展历史 / 27
1.5.1 计算机时代 / 27
1.5.2 大量程序 / 28
1.5.3 强弱人工智能 / 29
第2章 Python 编程基础 / 31
2.1 Python的基本数据类型 / 32
2.1.1 数值类型 / 32
2.1.2 字符串 / 34
2.2 变量与赋值 / 37
2.2.1 变量命名规则 / 37
2.2.2 变量的赋值 / 38
2.3 Python的基本运算 / 39
2.3.1 算术运算 / 39
2.3.2 赋值运算 / 41
2.3.3 位运算 / 42
2.4 Python的选择结构 / 43
2.4.1 关系运算 / 43
2.4.2 逻辑运算 / 45
2.4.3 if 语句 / 46
2.4.4 嵌套 if 语句 / 48
2.5 Python的循环结构 / 49
2.5.1 while循环 / 50
2.5.2 while 循环使用else语句 / 51
2.5.3 无限循环 / 51
2.5.4 for循环 / 52
2.5.5 在for循环中使用range()函数 / 53
2.5.6 break语句 / 54
2.5.7 continue语句 / 55
2.5.8 pass语句 / 56
2.6 Python的特征数据类型 / 57
2.6.1 列表 / 57
2.6.2 元组 / 61
2.6.3 字典 / 63
2.6.4 集合 / 64
2.7 Python的函数 / 67
2.7.1 函数的定义与调用 / 67
2.7.2 参数传递 / 69
2.7.3 匿名函数 / 71
2.7.4 变量作用域 / 72
2.8 Python的面向对象 / 73
2.8.1 面向对象概念 / 73
2.8.2 类与实例 / 74
2.8.3 模块的引用 / 77
2.9 Python的代码格式 / 78
2.9.1 代码缩进 / 78
2.9.2 代码注释 / 79
2.9.3 空行 / 79
2.9.4 同一行显示多条语句 / 79
第3章 人工智能的Numpy 包 / 81
3.1 初识Numpy包 / 82
3.2 ndarray数组基础 / 82
3.2.1 创建Numpy数组 / 83
3.2.2 Numpy特殊数组 / 86
3.2.3 Numpy序列数组 / 90
3.2.4 Numpy数组索引 / 91
3.2.5 Numpy数组运算 / 92
3.2.6 Numpy数组复制 / 93
3.3 Numpy的矩阵 / 94
3.4 Numpy的线性代数 / 96
3.4.1 两个数组的点积 / 96
3.4.2 两个向量的点积 / 97
3.4.3 一维数组的向量内积 / 97
3.4.4 矩阵的行列式 / 98
3.4.5 矩阵的逆 / 100
3.5 Numpy的文件操作 / 101
第4章 人工智能的Pandas 包 / 105
4.1 Pandas的数据结构 / 106
4.2 一维数组系列(Series) / 106
4.2.1 创建一个空的系列(Series) / 106
4.2.2 从ndarray创建一个系列(Series) / 107
4.2.3 从字典创建一个系列(Series) / 109
4.2.4 从有位置的系列(Series)中访问数据 / 109
4.2.5 使用