![]()
内容推荐 哈姆迪·塔哈著的《运筹学基础(英文版第10版全新版)/管理科学与工程经典丛书》是运筹学经典著作Operations research: an introduction的英文影印版。该书英文版自中国人民大学出版社引进出版以来,受到国内读者的广泛关注和好评,被许多高校选为“运筹学”双语课程或全英文课程的参考书。 本书的主要特色在于:(1)重视运筹学基本知识的讲解,对高深问题也做了较深入的分析,以满足不同读者的需要。(2)突出实用性。各章通过实践问题的求解导出运筹问题的数学模型,既凸显该运筹问题的实际背景,也便于读者学习建模。(3)增加了运筹学中重要理论与应用的重大事件介绍。(4)计算方法与软件相结合。全书使用教学辅助软件TORA、软件包Excel及AMPL等,读者可以利用这些软件工具对所学的模型和计算方法进行计算和检验。 作者简介 哈姆迪·塔哈(Hamdy A.Taha),美国阿肯色大学荣誉退休的工业工程教授,曾负责运筹学以及模拟方面的教学与科研工作,获得该校Alumni Award科研成果奖以及Nadine Baum优秀教学奖等。撰有相关领域的专著,并被译成多种语言出版。在European Journal of operatfons Research,IEEE Trans-actions on Reliability等杂志上发表多篇学术论文。 目录 Chapter 1 What Is Operations Research? 1.1 Introduction 1.2 Operations Research Models 1.3 Solvinq the OR Model 1.4 Queuing and Simulation Models 1.5 Art of Modeling 1.6 More than Just Mathematics 1.7 Phases of an OR Study 1.8 About this Book Bibliography Problems Chapter 2 Modeling with Linear Programming 2.1 Two-Variable LP Model 2.2 Graphical LP Solution 2.3 Computer Solution with Solver and AMPL 2.4 Linear Programming Applications Bibliography Problems Chapter 3 The Simplex Method and Sensitivity Analysis 3.1 LP Model in Equation Form 3.2 Transition from Graphical to Algebraic Solution 3.3 The Simplex Method 3.4 Artificial Startinq Solution 3.5 Special Cases in the Simplex Method 3.6 Sensitivity Analysis 3.7 Computational Issues in Linear Programming Bibliography Case Study: Optimization of Heart Valves Production Problems Chapter 4 Duality and Post-optima Analysis 4.1 Definition of the Dual Problem 4.2 Primal-Dual Relationshlps 4.3 Economic Interpretation of Duality 4.4 Additional Simplex Algorithms 4.5 Post-Optimal Analysis Bibliography Problems Chapter 5 Transportation Model and Its Variants 5.1 Definition of the Transportation Model 5.2 Nontraditional Transportation Models 5.3 The Transportation Algorithm 5.4 The Assignment Model Bibliography Case Study:Scheduling Appointments at Australian Tourist Commission Trade Events Problems Chapter 6 Network Model 6.1 Scope and Definition of Network Models 6.2 MinimaI Spanning Tree Algorithm 6.3 Shortest-Route Problem 6.4 Maximal Flow Model 6.5 CPM and Pert Bibliography Case Study: Saving Federal Travel Dollars Problems Chapter 7 Goal programming 7.1 A Goal Programming Formulation 7.2 Goal Programming Algorithms Bibliography Case Study: Allocation of Operating Room Time in Mount Sinai Hospital Problems Chapter 8 Integer Linear Programming 8.1 Illustrative Applications 8.2 Integer Programming Algorithms Bibliography Problems Chapter 9 Heuristic Programming 9.1 Introduction 9.2 Greedy (Local Search) Heuristics 9.3 Metaheuristic 9.4 Application of Metaheuristics to Integer Linear Programs 9.5 Introduction to Constraint Programming (CP) Bibliography Problems Chapter 10 Deterministic Dynamic Programming 10.1 Recursive Nature of Dynamic Programming (DP) Computations 10.2 Forward and Backward Recursion 10.3 Selected DP Applications 10.4 Problem of Dimensionality Bibliography Case Study: Optimization of Crosscutting and Log Allocation at Weyerhaeuser Problems Chapter 11 Inventory Modeling (with Introduction to Supply Chains) 11.1 lnventory Problem: A Supply Chain Perspective 11.2 Role of Demand in the Development of lnventory Models 11.3 Static Economic-Order-Quantity Models 11.4 Dynamic EOQ Models 11.5 Sticky Issues in InVentory Modeling Bibliography Case Study:Kroger Improves Pharmacy Inventory Management Problems Chapter 12 Decision Analysis and Games 12.1 Decision Making Under Certainty—Analytic Hierarchy Process (AHP) 12.2 Decision Making Under Risk 12.3 Decision Under Uncertainty 12.4 Game Theory Bibliography Case Study: Booking Limits in Hotel Reservations Problems Chapter 13 Probabilictic Inventory Models 13.1 Continuous Review Models 13.2 Single-Period Models 13.3 Multiperiod Model Bibliography Problems Chapter 14 Queuing Systems 14.1 Why Study Queues? 14.2 Elements of a Queuing Model 14.3 Role of Exponential Distribution 14.4 Pure Birth and Death Models (Relationship Between the Exponential and Poisson Distributions) 14.5 General Poisson Queuing Model 14.6 Specialized Poisson Queues 14.7 (M/G/1):(GD/∞/∞)——Pollaczek-Khintchine (P-K) Formula 14.8 Other Queuing Models 14.9 Queuing Decis |