![]()
内容推荐 《复分析引论(普通高等教育十三五规划教材)(英文版)》是作者曹怀信、张建华、陈峥立、郭志华多年从事复变函数论双语教学经验的总结。其内容设置完全适合我国现行高等院校(特别是师范院校)本科教学的教学目标与课时需要。本书内容深入浅出、层次分明,理论体系严谨、逻辑推导详尽,强调“分析式”教学法,在引入概念前,加入了必要的分析与归纳总结,然后提出相应的概念;在提出问题之后,进行推理分析、增加条件,最后得到问题的答案,并把前边的讨论总结成一个定理。其次,本书配有大量图形,帮助读者直观理解相应的概念与论证思路。 本书可供高等院校(特别是师范院校)大学生作为复分析(复变函数论)课程的英文教材,也可供相关科技人员参考。 目录 Preface Chapter 1 Complex Number Field 1.1 Addition and Multiplication 1.2 Basic Algebraic Properties 1.3 Further Properties 1.4 Moduli of Complex Numbers 1.5 Conjugates of Complex Numbers 1.6 Arguments of Complex Numbers 1.7 Arguments of Products and Quotients 1.8 Roots of Complex Numbers 1.9 Examples of Roots 1.10 Domains and Regions in the Complex Plane Chapter 2 Complex Variable Functions 2.1 Complex Variable Functions 2.2 Functions as Mappings 2.3 The Exponential Function and its Mapping Properties 2.4 Limits of Sequences and Functions 2.5 Properties of Limits 2.6 Limits Involving the Infinity 2.7 Continuous Functions 2.8 Differentiable Functions 2.9 Differentiation Formulas 2.10 A Characterization of Differentiability 2.11 Cauchy-Piemann Equations in Polar Coordinates 2.12 Analytic Functions Chapter 3 Elementary Functions 3.1 The Exponential Function 3.2 Trigonometric Functions 3.3 The Logarithmic Function 3.4 Branches of Logarithms 3.5 Complex Power Functions Chapter 4 Integral Theory of Complex Functions 4.1 Definite Integrals 4.2 Path Integrals 4.3 Computation and Estimation of Integrals 4.4 Cauchy Integral Theorem and its Extensions 4.5 Proof of Cauchy Integral Theorem 4.6 Cauchy Integral Formula 4.7 Cauchy Integral Formula for Derivatives 4.8 Liouville's Theorem and Maximum Modulus Principle Chapter 5 Taylor Series and Laurent Series 5.1 Convergence of Series 5.2 Taylor Series 5.3 Laurent Series 5.4 Absolute and Uniform Convergence of Power Series 5.5 Properties of Sums of Power Series 5.6 Uniqueness of Series Representations Chapter 6 Singular Points and Zeros of Analytic Functions. 6.1 Singular Points 6.2 Behavior of a Function Near Isolated Singular Points 6.3 Residues of Functions 6.4 Zeros of Analytic Functions 6.5 Zeros and Poles 6.6 Argument Principle 6.7 Rouche's Theorem Chapter 7 Conformal Mappings 7.1 Concepts and Examples 7.2 Unilateral Functions 7.3 Local Inverses 7.4 Affine Transformations 7.5 The Reciprocal Transformation 7.6 Fractional Linear Transformations 7.7 Cross Ratios 7.8 Mappings of the Upper Half Plane Bibliography
|