内容推荐 群和群作用是数学研究的重要对象,拥有强大的力量并且富于美感,这可以通过它广泛出现在诸多不同的科学领域体现出来。 季理真、帕帕多普洛斯、丘成桐编的《群作用手册(第Ⅲ卷英文版)(精)》由相关领域专家撰写的一系列综述文章组成,首次系统地展现了群作用及其应用,内容囊括经典主题的讨论、近来的热点专业问题的论述,有些文章还涉及相关的历史。本书填补了数学著作中的一项空白,适合于从初学者到相关领域专家的各个层次读者阅读。 目录 Part A: Hyperbolicity and Group Actions on Spaces of Nonpositive Curvature Action at Infinity of Quasi-isometries on Teichmuller Space and the Geometry of the Gromov Product Degeneration of Marked Hyperbolic Structures in Dimensions 2 and 3 Hyperbolic Four-manifolds The Hyperbolization Process and Its Riemannian Version. Surface Subgroups of Word-hyperbolic Groups Groups Acting on Spaces of Non-positive Curvature Part B: Group Actions on Geometric Structures Some Aspects of the Automorphism Groups of Domains Proper Actions of High-dimensional Groups on Complex Manifolds: The Techniques A Users' Guide to Infra-nilmanifolds and Almost-Bieberbach Groups Deformations of Convex Real Projective Manifolds and Orbifolds Lorentzian Kleinian Groups Group Actions and Scattering Problems in Teichmuller Theory Part C: Group Actions on Topological Manifolds and Symmetries A Survey of Group Actions on 4-Manifolds Group Actions in the Existence and Classification of Constant Mean Curvature Surfaces The Smith Equivalence Problem and the Laitinen Conjecture Index
|