刘兵编著的《Web数据挖掘》基础内容适合本科生阅读,但也包括足够多的深度资料,以满足打算在Web数据挖掘和相关领域研读博士学位的研究生。书中对读者的预备知识几乎没有作任何要求,任何对算法和概率知识稍有理解的人都应当能够顺利地读完本书。本书尽管题为“Web数据挖掘”,但依然涵盖了数据挖掘和信息检索的核心主题;因为Web挖掘大量使用了它们的算法和技术。数据挖掘部分主要由关联规则和序列模式、监督学习(分类)、无监督学习(聚类)这三大重要的数据挖掘任务,和半监督学习这个相对深入的主题组成。而信息检索对于Web挖掘而言最重要的核心主题都有所阐述。因此,本书自然的分为两大部分,第1部分包括第2~5章,介绍数据挖掘的基础,第2部分包括第6~12章,介绍Web相关的挖掘任务。
过去几十年里,Web的迅速发展使其成为世界上规模最大的公共数据源。Web挖掘的目标是从Web超链接、网页内容和使用日志中探寻有用的信息。
刘兵编著的《Web数据挖掘》旨在阐述Web数据挖掘的概念及其核心算法,使读者获得相对完整的关于Web数据挖掘的算法和技术知识。本书不仅介绍了搜索、页面爬取和资源探索以及链接分析等传统的Web挖掘主题,而且还介绍了结构化数据的抽取、信息整合、观点挖掘和Web使用挖掘等内容,这些内容在已有书籍中没有提及过,但它们在Web数据挖掘中却占有非常重要的地位。全书分为两大部分:第一部分包括第2章到第5章,介绍数据挖掘的基础,第二部分包括第6章到第12章,介绍Web相关的挖掘任务。从本书自第1版出版之后,很多领域已经有了重大的进展。新版大部分的章节都已经添加了新的材料来反应这些进展,主要的改动在第11章和第12章中,这两章已经被重新撰写并做了重要的扩展。
《Web数据挖掘》不仅可作为本科生的教科书,也是在Web数据挖掘和相关领域研读博士学位的研究生的重要参考用书,同时对Web挖掘研究人员和实践人员获取知识、信息、甚至是创新想法也很有帮助。