Richard G.Lyons所著的《数字信号处理(第3版英文版)》新增课后习题来加深理解,有助于应用所学知识,给出日常生活中经常遇到的数字信号处理问题及其解决方法,给出广义数字网络的全新指导,包括离散微分器、积分器和匹配滤波器,清晰阐述信号的统计测量,通过均化降低信号变化率,现实中的信噪比计算等问题,扩充了采样率变换(多速率系统)和相应的滤波器技术章节,对快速卷积的实现,无限冲激响应滤波器的尺度缩放及其他内容提供了更多、更新的指导,针对多样化通信和生物医学应用,分析数字滤波器行为和性能。
网站首页 软件下载 游戏下载 翻译软件 电子书下载 电影下载 电视剧下载 教程攻略
书名 | 数字信号处理(第3版英文版)/国外电子与通信教材系列 |
分类 | 科学技术-工业科技-电子通讯 |
作者 | (美)莱昂斯 |
出版社 | 电子工业出版社 |
下载 | ![]() |
简介 | 编辑推荐 Richard G.Lyons所著的《数字信号处理(第3版英文版)》新增课后习题来加深理解,有助于应用所学知识,给出日常生活中经常遇到的数字信号处理问题及其解决方法,给出广义数字网络的全新指导,包括离散微分器、积分器和匹配滤波器,清晰阐述信号的统计测量,通过均化降低信号变化率,现实中的信噪比计算等问题,扩充了采样率变换(多速率系统)和相应的滤波器技术章节,对快速卷积的实现,无限冲激响应滤波器的尺度缩放及其他内容提供了更多、更新的指导,针对多样化通信和生物医学应用,分析数字滤波器行为和性能。 内容推荐 Richard G.Lyons所著的《数字信号处理(第3版英文版)》全面讨论了数字信号处理的基本概念、原理和应用。全书共13章,主要包括离散序列和系统、离散傅里叶变换和其快速算法、有限和无限脉冲响应的滤波器的设计基本原理的基本数字信号处理内容,另外包括数字网络和滤波器、离散希尔伯特变换、抽样率的变换和信号平均、信号数字化及其影响的专业信号处理内容。给出了多年总结出的数字信号处理的一些技巧,包括如何进行复数的快速乘法、实序列的FFT变换、使用FFT的FIR滤波器设计等。附录对数字信号处理涉及的数学知识和术语给出了详细介绍和总结。相比于前版,《数字信号处理(第3版英文版)》每章都新增了部分内容,并附了习题,便于读者的自学。 目录 Chapter 1 Discrete Sequences and Systems 1.1 DISCRETE SEQUENCES AND THEIR NOTATION 1.2 SIGNAL AMPLITUDE, MAGNITUDE, POWER 1.3 SIGNAL PROCESSING OPERATIONAL SYMBOLS 1.4 INTRODUCTION TO DISCRETE LINEAR TIME-INVARIANT SYSTEMS 1.5 DISCRETE LINEAR SYSTEMS 1.5.1 Example of a Linear System 1.5.2 Example of a Nonlinear System 1.6 TIME-INVARIANT SYSTEMS 1.6.1 Example of a Time-Invariant System 1.7 THE COMMUTATIVE PROPERTY OF LINEAR TIME-INVARIANT SYSTEMS 1.8 ANALYZING LINEAR TIME-INVARIANT SYSTEMS REFERENCES CHAPTER 1 PROBLEMS Chapter 2 Periodic Sampling 2.1 ALIASING: SIGNALAMBIGUITY IN THE FREQUENCY DOMAIN 2.2 SAMPLING LOWPASS SIGNALS 2.3 SAMPLING BANDPASS SIGNALS 2.4 PRACTICAL ASPECTS OF BANDPASS SAMPLING 2.4.1 Spectral Inversion in Bandpass Sampling 2.4.2 Positioning Sampled Spectra at fs/4 2.4.3 Noise in Bandpass-Sampled Signals REFERENCES CHAPTER 2 PROBLEMS CHAPTER 3 The Discrete Fourier Transform 3.1 UNDERSTANDING THE DFT EQUATION 3.1.1 DFT Example 3.2 DFT SYMMETRY 3.3 DFT LINEARITY 3.4 DFT MAGNITUDES 3.5 DFT FREQUENCY AXIS 3.6 DFT SHIFTING THEOREM 3.6.1 DFT Example 2 3.7 INVERSE DFT 3.8 DFT LEAKAGE 3.9 WINDOWS 3.10 DFT SCALLOPING LOSS 3.11 DFT RESOLUTION, ZERO PADDING, AND FREQUENCY-DOMAIN SAMPLING 3.12 DFT PROCESSING GAIN 3.12.1 Processing Gain of a Single DFT 3.12.2 Integration Gain Due to Averaging Multiple DFTs 3.13 THE DFT OF RECTANGULAR FUNCTIONS 3.13.1 DFT of a General Rectangular Function 3.13.2 DFT of a Symmetrical Rectangular Function 3.13.3 DFT of an All-Ones Rectangular Function 3.13.4 Time and Frequency Axes Associated with the DFT 3.13.5 Alternate Form of the DFT of an All-Ones Rectangular Function 3.14 INTERPRETING THE DFT USING THE DISCRETE-TIME FOURIER TRANSFORM REFERENCES CHAPTER 3 PROBLEMS Chapter 4 The Fast Fourier Transform 4.1 RELATIONSHIP OF THE FFT TO THE DFT 4.2 HINTS ON USING FFTS IN PRACTICE 4.2.1 Sample Fast Enough and Long Enough 4.2.2 Manipulating the Time Data Prior to Transformation 4.2.3 Enhancing FFT Results 4.2.4 Interpreting FFT Results 4.3 DERIVATION OF THE RADIX-2 FFT ALGORITHM 4.4 FFT INPUT/OUTPUT DATA INDEX BIT REVERSAL 4.5 RADIX-2 FFT BUTTERFLY STRUCTURES 4.6 ALTERNATE SINGLE-BUTTERFLY STRUCTURES REFERENCES CHAPTER 4 PROBLEMS Chapter 5 Finite Impulse Response Filters 5.1 AN INTRODUCTION TO FINITE IMPULSE RESPONSE (FIR) FILTERS 5.2 CONVOLUTION IN FIR FILTERS 5.3 LOWPASS FIR FILTER DESIGN 5.3.1 Window Design Method 5.3.2 Windows Used in FIR Filter Design 5.4 BANDPASS FIR FILTER DESIGN 5.5 HIGHPASS FIR FILTER DESIGN 5.6 PARKS-MCCLELLAN EXCHANGE FIR FILTER DESIGN METHOD 5.7 HALF-BAND FIR FILTERS 5.8 PHASE RESPONSE OF FIR FILTERS 5.9 A GENERIC DESCRIPTION OF DISCRETE CONVOLUTION 5.9.1 Discrete Convolution in the Time Domain 5.9.2 The Convolution Theorem 5.9.3 Applying the Convolution Theorem 5.10 ANALYZING FIR FILTERS 5.10.1 Algebraic Analysis of FIR Filters 5.10.2 DFT Analysis of FIR Filters 5.10.3 FIR Filter Group Delay Revisited 5.10.4 FIR Filter Passband Gain 5.10.5 Estimating the Number of FIR Filter Taps REFERENCES CHAPTER 5 PROBLEMS Chapter 6 Infinite Impulse Response Filters 6.1 AN INTRODUCTION TO INFINITE IMPULSE RESPONSE FILTERS 6.2 THE LAPLACE TRANSFORM 6.2.1 Poles and Zeros on the s-Plane and Stability 6.3 THE z -TRANSFORM 6.3.1 Poles, Zeros, and Digital Filter Stability 6.4 USING THE z -TRANSFORM TO ANALYZE IIR FILTERS 6.4.1 z -Domain IIR Filter Analysis 6.4.2 IIR Filter Analysis Example 6.5 USING POLES AND ZEROS TO ANALYZE IIR FILTERS 6.5.1 IIR Filter Transfer Function Algebra 6.5.2 Using Poles/Zeros to Obtain Transfer Functions 6.6 ALTERNATE IIR FILTER STRUCTURES 6.6.1 Direct Form I, Direct Form II, and Transposed Structures 6.6.2 The Transposition Theorem 6.7 PITFALLS IN BUILDING IIR FILTERS 6.8 IMPROVING IIR FILTERS WITH CASCADED STRUCTURES 6.8.1 Cascade and Parallel Filter Properties 6.8.2 Cascading IIR Filters 6.9 SCALING THE GAIN OF IIR FILTERS 6.10 IMPULSE INVARIANCE IIR FILTER DESIGN METHOD 6.10.1 Impulse Invariance Design Method 1 Example 6.10.2 Impulse Invariance Design Method 2 Example 6.11 BILINEAR TRANSFORM IIR FILTER DESIGN METHOD 6.11.1 Bilinear Transform Design Example 6.12 OPTIMIZED IIR FILTER DESIGN METHOD 6.13 A BRIEF COMPARISON OF IIR AND FIR FILTERS REFERENCES CHAPTER 6 PROBLEMS Chapter 7 Specialized Digital Networks and Filters 7.1 DIFFERENTIATORS 7.1.1 Simple Differentiators 7.1.2 Specialized Narrowband Differentiators 7.1.3 Wideband Differentiators 7.1.4 Optimized Wideband Differentiators 7.2 INTEGRATORS 7.2.1 Rectangular Rule Integrator 7.2.2 Trapezoidal Rule Integrator 7.2.3 Simpson’s Rule Integrator 7.2.4 Tick’s Rule Integrator 7.2.5 Integrator Performance Comparison 7.3 MATCHED FILTERS 7.3.1 Matched Filter Properties 7.3.2 Matched Filter Example 7.3.3 Matched Filter Implementation Considerations 7.4 INTERPOLATED LOWPASS FIR FILTERS 7.4.1 Choosing the Optimum Expansion Factor M 7.4.2 Estimating the Number of FIR Filter Taps 7.4.3 Modeling IFIR Filter Performance 7.4.4 IFIR Filter Implementation Issues 7.4.5 IFIR Filter Design Example 7.5 FREQUENCY SAMPLING FILTERS: THE LOSTART 7.5.1 Comb Filter and Complex Resonator in Cascade 7.5.2 Multisection Complex FSFs 7.5.3 Ensuring FSF Stability 7.5.4 Multisection Real-Valued FSFs 7.5.5 Linear-Phase Multisection Real-Valued FSFs 7.5.6 Where We’ve Been and Where We’re Going with FSFs 7.5.7 An Efficient Real-Valued FSF 7.5.8 Modeling FSFs 7.5.9 Improving Performance with Transition Band Coefficients 7.5.10 Alternate FSF Structures 7.5.11 The Merits of FSFs 7.5.12 Type-IV FSF Example 7.5.13 When to Use an FSF 7.5.14 Designing FSFs 7.5.15 FSF Summary REFERENCES CHAPTER 7 PROBLEMS Chapter 8 Quadrature Signals 8.1 WHY CARE ABOUT QUADRATURE SIGNALS? 8.2 THE NOTATION OF COMPLEX NUMBERS 8.3 REPRESENTING REAL SIGNALS USING COMPLEX PHASORS 8.4 A FEW THOUGHTS ON NEGATIVE FREQUENCY 8.5 QUADRATURE SIGNALS IN THE FREQUENCY DOMAIN 8.6 BANDPASS QUADRATURE SIGNALS IN THE FREQUENCY DOMAIN 8.7 COMPLEX DOWN-CONVERSION 8.8 A COMPLEX DOWN-CONVERSION EXAMPLE 8.9 AN ALTERNATE DOWN-CONVERSION METHOD REFERENCES CHAPTER 8 PROBLEMS Chapter 9 The Discrete Hilbert Transform 9.1 HILBERT TRANSFORM DEFINITION 9.2 WHY CARE ABOUT THE HILBERT TRANSFORM? 9.3 IMPULSE RESPONSE OF A HILBERT TRANSFORMER 9.4 DESIGNING A DISCRETE HILBERT TRANSFORMER 9.4.1 Time-Domain Hilbert Transformation: FIR Filter Implementation 9.4.2 Frequency-Domain Hilbert Transformation 9.5 TIME-DOMAIN ANALYTIC SIGNAL GENERATION 9.6 COMPARING ANALYTIC SIGNAL GENERATION METHODS REFERENCES CHAPTER 9 PROBLEMS Chapter 10 Sample Rate Conversion 10.1 DECIMATION 10.2 TWO-STAGE DECIMATION 10.2.1 Two-Stage Decimation Concepts 10.2.2 Two-Stage Decimation Example 10.2.3 Two-Stage Decimation Considerations 10.3 PROPERTIES OF DOWNSAMPLING 10.3.1 Time and Frequency Properties of Downsampling 10.3.2 Drawing Downsampled Spectra 10.4 INTERPOLATION 10.5 PROPERTIES OF INTERPOLATION 10.5.1 Time and Frequency Properties of Interpolation 10.5.2 Drawing Upsampled Spectra 10.6 COMBINING DECIMATION AND INTERPOLATION 10.7 POLYPHASE FILTERS 10.8 TWO-STAGE INTERPOLATION 10.8.1 Two-Stage Interpolation Concepts 10.8.2 Two-Stage Interpolation Example 10.8.3 Two-Stage Interpolation Considerations 10.9 z-TRANSFORM ANALYSIS OF MULTIRATE SYSTEMS 10.9.1 Signal Mathematical Notation 10.9.2 Filter Mathematical Notation 10.10 POLYPHASE FILTER IMPLEMENTATIONS 10.11 SAMPLE RATE CONVERSION BY RATIONAL FACTORS 10.12 SAMPLE RATE CONVERSION WITH HALF-BAND FILTERS 10.12.1 Half-band Filtering Fundamentals 10.12.2 Half-band Filter Implementations 10.13 SAMPLE RATE CONVERSION WITH IFIR FILTERS 10.14 CASCADED INTEGRATOR-COMB FILTERS 10.14.1 Recursive Running Sum Filter 10.14.2 CIC Filter Structures 10.14.3 Improving CIC Attenuation 10.14.4 CIC Filter Implementation Issues 10.14.5 Compensation/Preconditioning FIR Filters REFERENCES CHAPTER 10 PROBLEMS Chapter 11 Signal Averaging 11.1 COHERENT AVERAGING 11.2 INCOHERENT AVERAGING 11.3 AVERAGING MULTIPLE FAST FOURIER TRANSFORMS 11.4 AVERAGING PHASE ANGLES 11.5 FILTERING ASPECTS OF TIME-DOMAIN AVERAGING 11.6 EXPONENTIAL AVERAGING 11.6.1 Time-Domain Filter Behavior 11.6.2 Frequency-Domain Filter Behavior 11.6.3 Exponential Averager Application REFERENCES CHAPTER 11 PROBLEMS Chapter 12 Digital Data Formats and Their Effects 12.1 FIXED-POINT BINARY FORMATS 12.1.1 Octal Numbers 12.1.2 Hexadecimal Numbers 12.1.3 Sign-Magnitude Binary Format 12.1.4 Two’s Complement Format 12.1.5 Offset Binary Format 12.1.6 Fractional Binary Numbers 12.2 BINARY NUMBER PRECISION AND DYNAMIC RANGE 12.3 EFFECTS OF FINITE FIXED-POINT BINARY WORD LENGTH 12.3.1 A/D Converter Quantization Errors 12.3.2 Data Overflow 12.3.3 Truncation 12.3.4 Data Rounding 12.4 FLOATING-POINT BINARY FORMATS 12.4.1 Floating-Point Dynamic Range 12.5 BLOCK FLOATING-POINT BINARY FORMAT REFERENCES CHAPTER 12 PROBLEMS Chapter 13 Digital Signal Processing Tricks 13.1 FREQUENCY TRANSLATION WITHOUT MULTIPLICATION 13.1.1 Frequency Translation by fs/2 13.1.2 Frequency Translation by –fs/4 13.1.3 Filtering and Decimation after fs/4 Down-Conversion 13.2 HIGH-SPEED VECTOR MAGNITUDE APPROXIMATION 13.3 FREQUENCY-DOMAIN WINDOWING 13.4 FAST MULTIPLICATION OF COMPLEX NUMBERS 13.5 EFFICIENTLY PERFORMING THE FFT OF REAL SEQUENCES 13.5.1 Performing Two N-Point Real FFTs 13.5.2 Performing a 2N-Point Real FFT 13.6 COMPUTING THE INVERSE FFT USING THE FORWARD FFT 13.6.1 Inverse FFT Method 1 13.6.2 Inverse FFT Method 2 13.7 SIMPLIFIED FIR FILTER STRUCTURE 13.8 REDUCING A/D CONVERTER QUANTIZATION NOISE 13.8.1 Oversampling 13.8.2 Dithering 13.9 A/D CONVERTER TESTING TECHNIQUES 13.9.1 Estimating A/D Quantization Noise with the FFT 13.9.2 Estimating A/D Dynamic Range 13.9.3 Detecting Missing Codes 13.10 FAST FIR FILTERING USING THE FFT 13.11 GENERATING NORMALLY DISTRIBUTED RANDOM DATA 13.12 ZERO-PHASE FILTERING 13.13 SHARPENED FIR FILTERS 13.14 INTERPOLATING A BANDPASS SIGNAL 13.15 SPECTRAL PEAK LOCATION ALGORITHM 13.16 COMPUTING FFT TWIDDLE FACTORS 13.16.1 Decimation-in-Frequency FFT Twiddle Factors 13.16.2 Decimation-in-Time FFT Twiddle Factors 13.17 SINGLE TONE DETECTION 13.17.1 Goertzel Algorithm 13.17.2 Goertzel Example 13.17.3 Goertzel Advantages over the FFT 13.18 THE SLIDING DFT 13.18.1 The Sliding DFT Algorithm 13.18.2 SDFT Stability 13.18.3 SDFT Leakage Reduction 13.18.4 A Little-Known SDFT Property 13.19 THE ZOOM FFT 13.20 A PRACTICAL SPECTRUM ANALYZER 13.21 AN EFFICIENT ARCTANGENT APPROXIMATION 13.22 FREQUENCY DEMODULATION ALGORITHMS 13.23 DC REMOVAL 13.23.1 Block-Data DC Removal 13.23.2 Real-Time DC Removal 13.23.3 Real-Time DC Removal with Quantization 13.24 IMPROVING TRADITIONAL CIC FILTERS 13.24.1 Nonrecursive CIC Filters 13.24.2 Nonrecursive Prime-Factor-R CIC Filters 13.25 SMOOTHING IMPULSIVE NOISE 13.26 EFFICIENT POLYNOMIAL EVALUATION 13.26.1 Floating-Point Horner’s Rule 13.26.2 Horner’s Rule in Binary Shift Multiplication/Division 13.26.3 Estrin’s Method 13.27 DESIGNING VERY HIGH-ORDER FIR FILTERS 13.28 TIME-DOMAIN INTERPOLATION USING THE FFT 13.28.1 Computing Interpolated Real Signals 13.28.2 Computing Interpolated Analytic Signals 13.29 FREQUENCY TRANSLATION USING DECIMATION 13.29.1 Translation of Real Signals Using Decimation 13.29.2 Translation of Complex Signals Using Decimation 13.30 AUTOMATIC GAIN CONTROL (AGC) 13.31 APPROXIMATE ENVELOPE DETECTION 13.32 A QUADRATURE OSCILLATOR 13.33 SPECIALIZED EXPONENTIALAVERAGING 13.33.1 Single-Multiply Exponential Averaging 13.33.2 Multiplier-Free Exponential Averaging 13.33.3 Dual-Mode Averaging 13.34 FILTERING NARROWBAND NOISE USING FILTER NULLS 13.35 EFFICIENT COMPUTATION OF SIGNALVARIANCE 13.36 REAL-TIME COMPUTATION OF SIGNAL AVERAGES AND VARIANCES 13.36.1 Computing Moving Averages and Variances 13.36.2 Computing Exponential Moving Average and Variance 13.37 BUILDING HILBERT TRANSFORMERS FROM HALF-BAND FILTERS 13.37.1 Half-band Filter Frequency Translation 13.37.2 Half-band Filter Coefficient Modification 13.38 COMPLEX VECTOR ROTATION WITH ARCTANGENTS 13.38.1 Vector Rotation to the 1st Octant 13.38.2 Vector Rotation by ±π/8 13.39 AN EFFICIENT DIFFERENTIATING NETWORK 13.40 LINEAR-PHASE DC-REMOVAL FILTER 13.41 AVOIDING OVERFLOW IN MAGNITUDE COMPUTATIONS 13.42 EFFICIENT LINEAR INTERPOLATION 13.43 ALTERNATE COMPLEX DOWN-CONVERSION SCHEMES 13.43.1 Half-band Filter Down-conversion 13.43.2 Efficient Single-Decimation Down-conversion 13.44 SIGNAL TRANSITION DETECTION 13.45 SPECTRAL FLIPPING AROUND SIGNAL CENTER FREQUENCY 13.46 COMPUTING MISSING SIGNAL SAMPLES 13.47 COMPUTING LARGE DFTS USING SMALL FFTS 13.48 COMPUTING FILTER GROUP DELAY WITHOUT ARCTANGENTS 13.49 COMPUTING A FORWARD AND INVERSE FFT USING A SINGLE FFT 13.50 IMPROVED NARROWBAND LOWPASS IIR FILTERS 13.50.1 The Problem with Narrowband Lowpass IIR Filters 13.50.2 An Improved Narrowband Lowpass IIR Filter 13.50.3 Interpolated-IIR Filter Example 13.51 A STABLE GOERTZEL ALGORITHM REFERENCES Appendix A The Arithmetic of Complex Numbers Appendix B Closed Form of a Geometric Series Appendix C Time Reversal and the DFT Appendix D Mean, Variance, and Standard Deviation Appendix E Decibels (dB and dBm) Appendix F Digital Filter Terminology Appendix G Frequency Sampling Filter Derivations Appendix H Frequency Sampling Filter Design Tables Appendix I Computing Chebyshev Window Sequences |
随便看 |
|
霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。