网站首页  软件下载  游戏下载  翻译软件  电子书下载  电影下载  电视剧下载  教程攻略

请输入您要查询的图书:

 

书名 数字信号处理(第3版英文版)/国外电子与通信教材系列
分类 科学技术-工业科技-电子通讯
作者 (美)莱昂斯
出版社 电子工业出版社
下载
简介
编辑推荐

Richard G.Lyons所著的《数字信号处理(第3版英文版)》新增课后习题来加深理解,有助于应用所学知识,给出日常生活中经常遇到的数字信号处理问题及其解决方法,给出广义数字网络的全新指导,包括离散微分器、积分器和匹配滤波器,清晰阐述信号的统计测量,通过均化降低信号变化率,现实中的信噪比计算等问题,扩充了采样率变换(多速率系统)和相应的滤波器技术章节,对快速卷积的实现,无限冲激响应滤波器的尺度缩放及其他内容提供了更多、更新的指导,针对多样化通信和生物医学应用,分析数字滤波器行为和性能。

内容推荐

Richard G.Lyons所著的《数字信号处理(第3版英文版)》全面讨论了数字信号处理的基本概念、原理和应用。全书共13章,主要包括离散序列和系统、离散傅里叶变换和其快速算法、有限和无限脉冲响应的滤波器的设计基本原理的基本数字信号处理内容,另外包括数字网络和滤波器、离散希尔伯特变换、抽样率的变换和信号平均、信号数字化及其影响的专业信号处理内容。给出了多年总结出的数字信号处理的一些技巧,包括如何进行复数的快速乘法、实序列的FFT变换、使用FFT的FIR滤波器设计等。附录对数字信号处理涉及的数学知识和术语给出了详细介绍和总结。相比于前版,《数字信号处理(第3版英文版)》每章都新增了部分内容,并附了习题,便于读者的自学。

目录

Chapter 1 Discrete Sequences and Systems

 1.1 DISCRETE SEQUENCES AND THEIR NOTATION

 1.2 SIGNAL AMPLITUDE, MAGNITUDE, POWER

 1.3 SIGNAL PROCESSING OPERATIONAL SYMBOLS

 1.4 INTRODUCTION TO DISCRETE LINEAR TIME-INVARIANT SYSTEMS

 1.5 DISCRETE LINEAR SYSTEMS

1.5.1 Example of a Linear System

1.5.2 Example of a Nonlinear System

 1.6 TIME-INVARIANT SYSTEMS

1.6.1 Example of a Time-Invariant System

 1.7 THE COMMUTATIVE PROPERTY OF LINEAR TIME-INVARIANT SYSTEMS

 1.8 ANALYZING LINEAR TIME-INVARIANT SYSTEMS

 REFERENCES

 CHAPTER 1 PROBLEMS

Chapter 2 Periodic Sampling

 2.1 ALIASING: SIGNALAMBIGUITY IN THE FREQUENCY DOMAIN

 2.2 SAMPLING LOWPASS SIGNALS

 2.3 SAMPLING BANDPASS SIGNALS

 2.4 PRACTICAL ASPECTS OF BANDPASS SAMPLING

2.4.1 Spectral Inversion in Bandpass Sampling

2.4.2 Positioning Sampled Spectra at fs/4

2.4.3 Noise in Bandpass-Sampled Signals

 REFERENCES

 CHAPTER 2 PROBLEMS

 CHAPTER 3 The Discrete Fourier Transform

 3.1 UNDERSTANDING THE DFT EQUATION

3.1.1 DFT Example

 3.2 DFT SYMMETRY

 3.3 DFT LINEARITY

 3.4 DFT MAGNITUDES

 3.5 DFT FREQUENCY AXIS

 3.6 DFT SHIFTING THEOREM

 3.6.1 DFT Example 2

 3.7 INVERSE DFT

 3.8 DFT LEAKAGE

 3.9 WINDOWS

 3.10 DFT SCALLOPING LOSS

 3.11 DFT RESOLUTION, ZERO PADDING, AND FREQUENCY-DOMAIN SAMPLING

 3.12 DFT PROCESSING GAIN

3.12.1 Processing Gain of a Single DFT

3.12.2 Integration Gain Due to Averaging Multiple DFTs

 3.13 THE DFT OF RECTANGULAR FUNCTIONS

3.13.1 DFT of a General Rectangular Function

3.13.2 DFT of a Symmetrical Rectangular Function

3.13.3 DFT of an All-Ones Rectangular Function

3.13.4 Time and Frequency Axes Associated with the DFT

3.13.5 Alternate Form of the DFT of an All-Ones Rectangular Function

 3.14 INTERPRETING THE DFT USING THE DISCRETE-TIME FOURIER TRANSFORM

 REFERENCES

 CHAPTER 3 PROBLEMS

Chapter 4 The Fast Fourier Transform

 4.1 RELATIONSHIP OF THE FFT TO THE DFT

 4.2 HINTS ON USING FFTS IN PRACTICE

4.2.1 Sample Fast Enough and Long Enough

4.2.2 Manipulating the Time Data Prior to Transformation

4.2.3 Enhancing FFT Results

4.2.4 Interpreting FFT Results

 4.3 DERIVATION OF THE RADIX-2 FFT ALGORITHM

 4.4 FFT INPUT/OUTPUT DATA INDEX BIT REVERSAL

 4.5 RADIX-2 FFT BUTTERFLY STRUCTURES

 4.6 ALTERNATE SINGLE-BUTTERFLY STRUCTURES

 REFERENCES

 CHAPTER 4 PROBLEMS

Chapter 5 Finite Impulse Response Filters

 5.1 AN INTRODUCTION TO FINITE IMPULSE RESPONSE (FIR) FILTERS

 5.2 CONVOLUTION IN FIR FILTERS

 5.3 LOWPASS FIR FILTER DESIGN

5.3.1 Window Design Method

5.3.2 Windows Used in FIR Filter Design

 5.4 BANDPASS FIR FILTER DESIGN

 5.5 HIGHPASS FIR FILTER DESIGN

 5.6 PARKS-MCCLELLAN EXCHANGE FIR FILTER DESIGN METHOD

 5.7 HALF-BAND FIR FILTERS

 5.8 PHASE RESPONSE OF FIR FILTERS

 5.9 A GENERIC DESCRIPTION OF DISCRETE CONVOLUTION

5.9.1 Discrete Convolution in the Time Domain

5.9.2 The Convolution Theorem

5.9.3 Applying the Convolution Theorem

 5.10 ANALYZING FIR FILTERS

5.10.1 Algebraic Analysis of FIR Filters

5.10.2 DFT Analysis of FIR Filters

5.10.3 FIR Filter Group Delay Revisited

5.10.4 FIR Filter Passband Gain

5.10.5 Estimating the Number of FIR Filter Taps

 REFERENCES

 CHAPTER 5 PROBLEMS

Chapter 6 Infinite Impulse Response Filters

 6.1 AN INTRODUCTION TO INFINITE IMPULSE RESPONSE FILTERS

 6.2 THE LAPLACE TRANSFORM

6.2.1 Poles and Zeros on the s-Plane and Stability

 6.3 THE z -TRANSFORM

6.3.1 Poles, Zeros, and Digital Filter Stability

 6.4 USING THE z -TRANSFORM TO ANALYZE IIR FILTERS

6.4.1 z -Domain IIR Filter Analysis

6.4.2 IIR Filter Analysis Example

 6.5 USING POLES AND ZEROS TO ANALYZE IIR FILTERS

6.5.1 IIR Filter Transfer Function Algebra

6.5.2 Using Poles/Zeros to Obtain Transfer Functions

 6.6 ALTERNATE IIR FILTER STRUCTURES

6.6.1 Direct Form I, Direct Form II, and Transposed Structures

6.6.2 The Transposition Theorem

 6.7 PITFALLS IN BUILDING IIR FILTERS

 6.8 IMPROVING IIR FILTERS WITH CASCADED STRUCTURES

6.8.1 Cascade and Parallel Filter Properties

6.8.2 Cascading IIR Filters

 6.9 SCALING THE GAIN OF IIR FILTERS

 6.10 IMPULSE INVARIANCE IIR FILTER DESIGN METHOD

6.10.1 Impulse Invariance Design Method 1 Example

6.10.2 Impulse Invariance Design Method 2 Example

 6.11 BILINEAR TRANSFORM IIR FILTER DESIGN METHOD

6.11.1 Bilinear Transform Design Example

 6.12 OPTIMIZED IIR FILTER DESIGN METHOD

 6.13 A BRIEF COMPARISON OF IIR AND FIR FILTERS

 REFERENCES

 CHAPTER 6 PROBLEMS

Chapter 7 Specialized Digital Networks and Filters

 7.1 DIFFERENTIATORS

7.1.1 Simple Differentiators

7.1.2 Specialized Narrowband Differentiators

7.1.3 Wideband Differentiators

7.1.4 Optimized Wideband Differentiators

 7.2 INTEGRATORS

7.2.1 Rectangular Rule Integrator

7.2.2 Trapezoidal Rule Integrator

7.2.3 Simpson’s Rule Integrator

7.2.4 Tick’s Rule Integrator

7.2.5 Integrator Performance Comparison

 7.3 MATCHED FILTERS

7.3.1 Matched Filter Properties

7.3.2 Matched Filter Example

7.3.3 Matched Filter Implementation Considerations

 7.4 INTERPOLATED LOWPASS FIR FILTERS

7.4.1 Choosing the Optimum Expansion Factor M

7.4.2 Estimating the Number of FIR Filter Taps

7.4.3 Modeling IFIR Filter Performance

7.4.4 IFIR Filter Implementation Issues

7.4.5 IFIR Filter Design Example

 7.5 FREQUENCY SAMPLING FILTERS: THE LOSTART

7.5.1 Comb Filter and Complex Resonator in Cascade

7.5.2 Multisection Complex FSFs

7.5.3 Ensuring FSF Stability

7.5.4 Multisection Real-Valued FSFs

7.5.5 Linear-Phase Multisection Real-Valued FSFs

7.5.6 Where We’ve Been and Where We’re Going with FSFs

7.5.7 An Efficient Real-Valued FSF

7.5.8 Modeling FSFs

7.5.9 Improving Performance with Transition Band Coefficients

7.5.10 Alternate FSF Structures

7.5.11 The Merits of FSFs

7.5.12 Type-IV FSF Example

7.5.13 When to Use an FSF

7.5.14 Designing FSFs

7.5.15 FSF Summary

 REFERENCES

 CHAPTER 7 PROBLEMS

Chapter 8 Quadrature Signals

 8.1 WHY CARE ABOUT QUADRATURE SIGNALS?

 8.2 THE NOTATION OF COMPLEX NUMBERS

 8.3 REPRESENTING REAL SIGNALS USING COMPLEX PHASORS

 8.4 A FEW THOUGHTS ON NEGATIVE FREQUENCY

 8.5 QUADRATURE SIGNALS IN THE FREQUENCY DOMAIN

 8.6 BANDPASS QUADRATURE SIGNALS IN THE FREQUENCY DOMAIN

 8.7 COMPLEX DOWN-CONVERSION

 8.8 A COMPLEX DOWN-CONVERSION EXAMPLE

 8.9 AN ALTERNATE DOWN-CONVERSION METHOD

 REFERENCES

 CHAPTER 8 PROBLEMS

Chapter 9 The Discrete Hilbert Transform

 9.1 HILBERT TRANSFORM DEFINITION

 9.2 WHY CARE ABOUT THE HILBERT TRANSFORM?

 9.3 IMPULSE RESPONSE OF A HILBERT TRANSFORMER

 9.4 DESIGNING A DISCRETE HILBERT TRANSFORMER

9.4.1 Time-Domain Hilbert Transformation: FIR Filter Implementation

9.4.2 Frequency-Domain Hilbert Transformation

 9.5 TIME-DOMAIN ANALYTIC SIGNAL GENERATION

 9.6 COMPARING ANALYTIC SIGNAL GENERATION METHODS

 REFERENCES

 CHAPTER 9 PROBLEMS

Chapter 10 Sample Rate Conversion

 10.1 DECIMATION

 10.2 TWO-STAGE DECIMATION

10.2.1 Two-Stage Decimation Concepts

10.2.2 Two-Stage Decimation Example

10.2.3 Two-Stage Decimation Considerations

 10.3 PROPERTIES OF DOWNSAMPLING

10.3.1 Time and Frequency Properties of Downsampling

10.3.2 Drawing Downsampled Spectra

 10.4 INTERPOLATION

 10.5 PROPERTIES OF INTERPOLATION

10.5.1 Time and Frequency Properties of Interpolation

10.5.2 Drawing Upsampled Spectra

 10.6 COMBINING DECIMATION AND INTERPOLATION

 10.7 POLYPHASE FILTERS

 10.8 TWO-STAGE INTERPOLATION

10.8.1 Two-Stage Interpolation Concepts

10.8.2 Two-Stage Interpolation Example

10.8.3 Two-Stage Interpolation Considerations

 10.9 z-TRANSFORM ANALYSIS OF MULTIRATE SYSTEMS

10.9.1 Signal Mathematical Notation

10.9.2 Filter Mathematical Notation

 10.10 POLYPHASE FILTER IMPLEMENTATIONS

 10.11 SAMPLE RATE CONVERSION BY RATIONAL FACTORS

 10.12 SAMPLE RATE CONVERSION WITH HALF-BAND FILTERS

10.12.1 Half-band Filtering Fundamentals

10.12.2 Half-band Filter Implementations

 10.13 SAMPLE RATE CONVERSION WITH IFIR FILTERS

 10.14 CASCADED INTEGRATOR-COMB FILTERS

10.14.1 Recursive Running Sum Filter

10.14.2 CIC Filter Structures

10.14.3 Improving CIC Attenuation

10.14.4 CIC Filter Implementation Issues

10.14.5 Compensation/Preconditioning FIR Filters

 REFERENCES

 CHAPTER 10 PROBLEMS

Chapter 11 Signal Averaging

 11.1 COHERENT AVERAGING

 11.2 INCOHERENT AVERAGING

 11.3 AVERAGING MULTIPLE FAST FOURIER TRANSFORMS

 11.4 AVERAGING PHASE ANGLES

 11.5 FILTERING ASPECTS OF TIME-DOMAIN AVERAGING

 11.6 EXPONENTIAL AVERAGING

11.6.1 Time-Domain Filter Behavior

11.6.2 Frequency-Domain Filter Behavior

11.6.3 Exponential Averager Application

 REFERENCES

 CHAPTER 11 PROBLEMS

Chapter 12 Digital Data Formats and Their Effects

 12.1 FIXED-POINT BINARY FORMATS

12.1.1 Octal Numbers

12.1.2 Hexadecimal Numbers

12.1.3 Sign-Magnitude Binary Format

12.1.4 Two’s Complement Format

12.1.5 Offset Binary Format

12.1.6 Fractional Binary Numbers

 12.2 BINARY NUMBER PRECISION AND DYNAMIC RANGE

 12.3 EFFECTS OF FINITE FIXED-POINT BINARY WORD LENGTH

12.3.1 A/D Converter Quantization Errors

12.3.2 Data Overflow

12.3.3 Truncation

12.3.4 Data Rounding

 12.4 FLOATING-POINT BINARY FORMATS

12.4.1 Floating-Point Dynamic Range

 12.5 BLOCK FLOATING-POINT BINARY FORMAT

 REFERENCES

 CHAPTER 12 PROBLEMS

Chapter 13 Digital Signal Processing Tricks

 13.1 FREQUENCY TRANSLATION WITHOUT MULTIPLICATION

13.1.1 Frequency Translation by fs/2

13.1.2 Frequency Translation by –fs/4

13.1.3 Filtering and Decimation after fs/4 Down-Conversion

 13.2 HIGH-SPEED VECTOR MAGNITUDE APPROXIMATION

 13.3 FREQUENCY-DOMAIN WINDOWING

 13.4 FAST MULTIPLICATION OF COMPLEX NUMBERS

 13.5 EFFICIENTLY PERFORMING THE FFT OF REAL SEQUENCES

13.5.1 Performing Two N-Point Real FFTs

13.5.2 Performing a 2N-Point Real FFT

 13.6 COMPUTING THE INVERSE FFT USING THE FORWARD FFT

13.6.1 Inverse FFT Method 1

13.6.2 Inverse FFT Method 2

 13.7 SIMPLIFIED FIR FILTER STRUCTURE

 13.8 REDUCING A/D CONVERTER QUANTIZATION NOISE

13.8.1 Oversampling

13.8.2 Dithering

 13.9 A/D CONVERTER TESTING TECHNIQUES

13.9.1 Estimating A/D Quantization Noise with the FFT

13.9.2 Estimating A/D Dynamic Range

13.9.3 Detecting Missing Codes

 13.10 FAST FIR FILTERING USING THE FFT

 13.11 GENERATING NORMALLY DISTRIBUTED RANDOM DATA

 13.12 ZERO-PHASE FILTERING

 13.13 SHARPENED FIR FILTERS

 13.14 INTERPOLATING A BANDPASS SIGNAL

 13.15 SPECTRAL PEAK LOCATION ALGORITHM

 13.16 COMPUTING FFT TWIDDLE FACTORS

13.16.1 Decimation-in-Frequency FFT Twiddle Factors

13.16.2 Decimation-in-Time FFT Twiddle Factors

 13.17 SINGLE TONE DETECTION

13.17.1 Goertzel Algorithm

13.17.2 Goertzel Example

13.17.3 Goertzel Advantages over the FFT

 13.18 THE SLIDING DFT

13.18.1 The Sliding DFT Algorithm

13.18.2 SDFT Stability

13.18.3 SDFT Leakage Reduction

13.18.4 A Little-Known SDFT Property

 13.19 THE ZOOM FFT

 13.20 A PRACTICAL SPECTRUM ANALYZER

 13.21 AN EFFICIENT ARCTANGENT APPROXIMATION

 13.22 FREQUENCY DEMODULATION ALGORITHMS

 13.23 DC REMOVAL

13.23.1 Block-Data DC Removal

13.23.2 Real-Time DC Removal

13.23.3 Real-Time DC Removal with Quantization

 13.24 IMPROVING TRADITIONAL CIC FILTERS

13.24.1 Nonrecursive CIC Filters

13.24.2 Nonrecursive Prime-Factor-R CIC Filters

 13.25 SMOOTHING IMPULSIVE NOISE

 13.26 EFFICIENT POLYNOMIAL EVALUATION

13.26.1 Floating-Point Horner’s Rule

13.26.2 Horner’s Rule in Binary Shift Multiplication/Division

13.26.3 Estrin’s Method

 13.27 DESIGNING VERY HIGH-ORDER FIR FILTERS

 13.28 TIME-DOMAIN INTERPOLATION USING THE FFT

13.28.1 Computing Interpolated Real Signals

13.28.2 Computing Interpolated Analytic Signals

 13.29 FREQUENCY TRANSLATION USING DECIMATION

13.29.1 Translation of Real Signals Using Decimation

13.29.2 Translation of Complex Signals Using Decimation

 13.30 AUTOMATIC GAIN CONTROL (AGC)

 13.31 APPROXIMATE ENVELOPE DETECTION

 13.32 A QUADRATURE OSCILLATOR

 13.33 SPECIALIZED EXPONENTIALAVERAGING

13.33.1 Single-Multiply Exponential Averaging

13.33.2 Multiplier-Free Exponential Averaging

13.33.3 Dual-Mode Averaging

 13.34 FILTERING NARROWBAND NOISE USING FILTER NULLS

 13.35 EFFICIENT COMPUTATION OF SIGNALVARIANCE

 13.36 REAL-TIME COMPUTATION OF SIGNAL AVERAGES AND VARIANCES

13.36.1 Computing Moving Averages and Variances

13.36.2 Computing Exponential Moving Average and Variance

 13.37 BUILDING HILBERT TRANSFORMERS FROM HALF-BAND FILTERS

13.37.1 Half-band Filter Frequency Translation

13.37.2 Half-band Filter Coefficient Modification

 13.38 COMPLEX VECTOR ROTATION WITH ARCTANGENTS

13.38.1 Vector Rotation to the 1st Octant

13.38.2 Vector Rotation by ±π/8

 13.39 AN EFFICIENT DIFFERENTIATING NETWORK

 13.40 LINEAR-PHASE DC-REMOVAL FILTER

 13.41 AVOIDING OVERFLOW IN MAGNITUDE COMPUTATIONS

 13.42 EFFICIENT LINEAR INTERPOLATION

 13.43 ALTERNATE COMPLEX DOWN-CONVERSION SCHEMES

13.43.1 Half-band Filter Down-conversion

13.43.2 Efficient Single-Decimation Down-conversion

 13.44 SIGNAL TRANSITION DETECTION

 13.45 SPECTRAL FLIPPING AROUND SIGNAL CENTER FREQUENCY

 13.46 COMPUTING MISSING SIGNAL SAMPLES

 13.47 COMPUTING LARGE DFTS USING SMALL FFTS

 13.48 COMPUTING FILTER GROUP DELAY WITHOUT ARCTANGENTS

 13.49 COMPUTING A FORWARD AND INVERSE FFT USING A SINGLE FFT

 13.50 IMPROVED NARROWBAND LOWPASS IIR FILTERS

13.50.1 The Problem with Narrowband Lowpass IIR Filters

13.50.2 An Improved Narrowband Lowpass IIR Filter

13.50.3 Interpolated-IIR Filter Example

 13.51 A STABLE GOERTZEL ALGORITHM

REFERENCES

 Appendix A The Arithmetic of Complex Numbers

 Appendix B Closed Form of a Geometric Series

 Appendix C Time Reversal and the DFT

 Appendix D Mean, Variance, and Standard Deviation

 Appendix E Decibels (dB and dBm)

 Appendix F Digital Filter Terminology

 Appendix G Frequency Sampling Filter Derivations

 Appendix H Frequency Sampling Filter Design Tables

 Appendix I Computing Chebyshev Window Sequences

随便看

 

霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。

 

Copyright © 2002-2024 101bt.net All Rights Reserved
更新时间:2025/4/8 12:56:46