本书是《变分法》第4版,主要讲述在非线性偏微分方程和哈密顿系统中的应用,继第一版出版十八年再次全新呈现。整本书都做了大量的修改,仅500多条参考书目就将其价值大大提升。第四版中主要讲述变分微积分,增加了该领域的最新进展。这也是一部变分法学习的教程,特别讲述了yamabe流的收敛和胀开现象以及最新研究发现的调和映射和曲面中热流的向后小泡形成。本书由斯特沃著。
网站首页 软件下载 游戏下载 翻译软件 电子书下载 电影下载 电视剧下载 教程攻略
书名 | 变分法(第4版) |
分类 | 科学技术-自然科学-数学 |
作者 | (瑞士)斯特沃 |
出版社 | 世界图书出版公司 |
下载 | ![]() |
简介 | 编辑推荐 本书是《变分法》第4版,主要讲述在非线性偏微分方程和哈密顿系统中的应用,继第一版出版十八年再次全新呈现。整本书都做了大量的修改,仅500多条参考书目就将其价值大大提升。第四版中主要讲述变分微积分,增加了该领域的最新进展。这也是一部变分法学习的教程,特别讲述了yamabe流的收敛和胀开现象以及最新研究发现的调和映射和曲面中热流的向后小泡形成。本书由斯特沃著。 目录 Chapter I.the direct methods in the calculus of variations 1.lower semi-continuity degenerate elliptic equations -minimal partitioning hypersurfaces -minimal hypersurfaces in riemannian manifolds -a general lower semi-continuity result 2.constraints semilinear elliptic boundary value problems -perron's method in a variational guise -the classical plateau problem 3.compensated compactness applications in elasticity -convergence results for nonlinear elliptic equations -hardy space methods 4.the concentration-compactness principle existence of extremal functions for sobolev embeddings 5.ekeland's variational principle existence of minimizers for quasi-convex functionals 6.duality hamiltonian systems -periodic solutions of nonlinear wave equations 7.minimization problems depending on parameters harmonic maps with singularities Chapter Ⅱ.minimax methods 1.the finite dimensional case 2.the palais-smale condition 3.a general deformation lemma pseudo-gradient flows on banach spaces -pseudo-gradient flows on manifolds 4.the minimax principle closed geodesics on spheres 5.index theory krasnoselskii genus -minimax principles for even functional -applications to semilinear elliptic problems -general index theories -ljusternik-schnirelman category -a geometrical si-index -multiple periodic orbits of hamiltonian systems 6.the mountain pass lemma and its variants applications to semilinear elliptic boundary value problems -the symmetric mountain pass lemma -application to semilinear equa- tions with symmetry 7.perturbation theory applications to semilinear elliptic equations 8.linking applications to semilinear elliptic equations -applications to hamil- tonian systems 9.parameter dependence 10.critical points of mountain pass type multiple solutions of coercive elliptic problems 11.non-differentiable fhnctionals 12.ljnsternik-schnirelman theory on convex sets applications to semilinear elliptic boundary value problems Chapter Ⅲ.Limit cases of the palais-smale condition 1.pohozaev's non-existence result 2.the brezis-nirenberg result constrained minimization -the unconstrained case: local compact- ness -multiple solutions 3.the effect of topology a global compactness result, 184 -positive solutions on annular-shaped regions, 190 4.the yamabe problem the variational approach -the locally conformally flat case -the yamabe flow -the proof of theorem4.9 (following ye [1]) -convergence of the yamabe flow in the general case -the compact case ucc -bubbling: the casu 5.the dirichlet problem for the equation of constant mean curvature small solutions -the volume functional - wente's uniqueness result -local compactness -large solutions 6.harmonic maps of riemannian surfaces the euler-lagrange equations for harmonic maps -bochner identity -the homotopy problem and its functional analytic setting -existence and non-existence results -the heat flow for harmonic maps -the global existence result -the proof of theorem 6.6 -finite-time blow-up -reverse bubbling and nonuniqueness appendix a sobolev spaces -hslder spaces -imbedding theorems -density theorem -trace and extension theorems -poincar4 inequality appendix b schauder estimates -lp-theory -weak solutions -areg-ularityresult -maximum principle -weak maximum principle -application appendix c frechet differentiability -natural growth conditions references index |
随便看 |
|
霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。