图论教程(影印版)(精)/国外数学名著系列豆瓣PDF电子书bt网盘迅雷下载电子书下载-霍普软件下载网

网站首页   软件下载   游戏下载   翻译软件   电子书下载   电影下载   电视剧下载   教程攻略   音乐专区

请输入您要查询的图书:

霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。

电子书 图论教程(影印版)(精)/国外数学名著系列
分类 电子书下载
作者 (印)巴拉克里什南
出版社 科学出版社
下载 暂无下载
介绍
编辑推荐

Graph theory has experienced a tremendous growth during the 20thcentury. One of the main reasons for this phenomenon is theapplicability of graph theory in other disciplines such as physics,chemistry, psychology, sociology, and theoretical computer science.This book aims to provide a solid background in the basic topics ofgraph theory. It covers Dirac's theorem on k-connected graphs,Harary-Nashwilliam's theorem on the hamiltonicity of line graphs,Toida-McKee's characterization of Eulerian graphs, the Tutte matrixof a graph, Foumier's proof of Kuratowski's theorem on planar graphs,the proof of the nonhamiltonicity of the Tutte graph on 46 verticesand a concrete application of triangulated graphs. The book does notpresuppose deep knowledge of any'branch of mathematics, butrequires only the basics of mathematics. It can be used in an advancedundergraduate course ora beginning graduate course in graph theory.

目录

Preface

Ⅰ Basic Results

 1.0 Introduction

 1.1 Basic Concepts

 t.2 Subgraphs

 1.3 Degrees of Vertices

 1.4 Paths and Connectedness

 1.5 Automorphism of a Simple Graph

 1.6 Line Graphs

 1.7 Operations on Graphs

 1.8 An Application to Chemistry

 1.9 Miscellaneous Exercises

 Notes

Ⅱ Directed Graphs

 2.0 Introduction

 2.1 Basic Concepts

 2.2 Tournaments

 2.3 k-Partite Tournaments

 Notes

Ⅲ Connectivity

 3.0 Introduction

 3.1 Vertex Cuts and Edge Cuts

 3.2 Connectivity and Edge-Connectivity

 3.3 Blocks

 3.4 Cyclical Edge-Connectivity of a Graph

 3.5 Menger's Theorem

 3.6 Exercises

 Notes

Ⅳ Trees

 4.0 Introduction

 4.1 Definition, Characterization, and Simple Properties

 4.2 Centers and Centroids

 4.3 Counting the Number of Spanning Trees

 4.4 Cayley's Formula

 4.5 Helly Property

 4.6 Exercises

 Notes

Ⅴ Independent Sets and Matehings

 5.0 Introduction

 5.1 Vertex Independent Sets and Vertex Coverings

 5.2 Edge-Independent Sets

 5.3 Matchings and Factors

 5.4 Matchings in Bipartite Graphs

 5.5* Perfect Matchings and the Tutte Matrix

 Notes

Ⅵ Eulerian and Hamiltonian Graphs

 6.0 Introduction

 6.1 Eulerian Graphs

 6.2 Hamiltonian Graphs

 6.3* Pancyclic Graphs

 6.4 Hamilton Cycles in Line Graphs

 6.5 2-Factorable Graphs

 6.6 Exercises

 Notes

Ⅶ Graph Colorings

 7.0 Introduction

 7.1 Vertex Colorings

 7.2 Critical Graphs

 7.3 Triangle-Free Graphs

 7.4 Edge Colorings of Graphs

 7.5 Snarks

 7.6 Kirkman's Schoolgirls Problem

 7.7 Chromatic Polynomials

 Notes

Ⅷ Planarity

 8.0 Introduction

 8.1 Planar and Nonplanar Graphs

 8.2 Euler Formula and Its Consequences

 8.3 Ks and K3.3 are Nonplanar Graphs

 8.4 Dual of a Plane Graph

 8.5 The Four-Color Theorem and the Heawood Five-Color Theorem

 8.6 Kuratowski's Theorem

 8.7 Hamiltonian Plane Graphs

 8.8 Tait Coloring

 Notes

Ⅸ Triangulated Graphs

 9.0 Introduction

 9.1 Perfect Graphs

 9.2 Triangulated Graphs

 9.3 Interval Graphs

 9.4 Bipartite Graph B(G) of a Graph G

 9.5 Circular Arc Graphs

 9.6 Exercises

 9.7 Phasing of Traffic Lights at a Road Junction

 Notes

Ⅹ Applications

 10.0 Introduction

 10.1 The Connector Problem

 10.2 Kruskal's Algorithm

 10.3 Prim's Algorithm

 10.4 Shortest-Path Problems

 10.5 Timetable Problem

 10.6 Application to Social Psychology

 10.7 Exercises

 Notes

List of Symbols

References

Index

截图
随便看

免责声明
本网站所展示的内容均来源于互联网,本站自身不存储、不制作、不上传任何内容,仅对网络上已公开的信息进行整理与展示。
本站不对所转载内容的真实性、完整性和合法性负责,所有内容仅供学习与参考使用。
若您认为本站展示的内容可能存在侵权或违规情形,请您提供相关权属证明与联系方式,我们将在收到有效通知后第一时间予以删除或屏蔽。
本网站对因使用或依赖本站信息所造成的任何直接或间接损失概不承担责任。联系邮箱:101bt@pm.me