微分流形导论(第2版)豆瓣PDF电子书bt网盘迅雷下载电子书下载-霍普软件下载网

网站首页   软件下载   游戏下载   翻译软件   电子书下载   电影下载   电视剧下载   教程攻略   音乐专区

请输入您要查询的图书:

霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。

电子书 微分流形导论(第2版)
分类 电子书下载
作者 (美)朗
出版社 世界图书出版公司
下载 暂无下载
介绍
编辑推荐

这本《微分流形导论(第2版)》由美国Serge Lang所著,内容是:  The book gives an introduction to the basic concepts which are used indifferential topology, differential geometry, and differential equations. In differential topology, one studies for instance homotopy classes of maps andthe possibility of finding suitable differentiable maps in them (immersions,embeddings, isomorphisms, etc.). One may also use differentiable structureson topological manifolds to determine the topological structure of themanifold (for example, a la Smale [Sm 67]). In differential geometry, oneputs an additional structure on the differentiable manifold (a vector field, aspray, a 2-form, a Riemannian metric, ad lib.) and studies properties con-nected especially with these objects.

目录

Foroword

Acknowledgments

CHAPTER Ⅰ Differential Calculus

 §1. Categories

 §2. Finite Dimensional Vector Spaces

 §3. Derivatives and Composition of Maps

 §4. Integration and Taylor's Formula

 §5. The Inverse Mapping Theorem

CHAPTER Ⅱ Manifolds

 §1. Atlases, Charts, Morphisms

 §2. Submanifolds, Immersions, Submersions

 §3. Partitions of Unity

 §4. Manifolds with Boundary

CHAPTER Ⅲ Vector Bundles

 §1. Definition, Pull Backs

 §2. The Tangent Bundle

 §3. Exact Sequences of Bundles

 §4. Operations on Vector Bundles

 §5. Splitting of Vector Bundles

CHAPTER Ⅳ Vector Fields end Differential Equations

 §1. Existence Theorem for Differential Equations

 §2. Vector Fields, Curves, and Flows

 §3. Sprays

 §4. The Flow of a Spray and the Exponential Map

 §5. Existence of Tubular Neighborhoods

 §6. Uniqueness of Tubular Neighborhoods

CHAPTER Ⅴ Operations on Vector Fields and Differential Forms

 §1. Vector Fields, Differential Operators, Brackets

 §2. Lie Derivative

 §3. Exterior Derivative

 §4. The Poincare Lemma

 §5. Contractions and Lie Derivative

 §6. Vector Fields and I-Forms Under Self Duality

 §7. The Canonical 2-Form

 §8. Darboux's Theorem

CHAPTER Ⅵ The Theorem of Frobenlus

 §1. Statement of the Theorem

 §2. Differential Equations Depending on a Parameter

 §3. Proof of the Theorem

 §4. The Global Formulation

 §5. Lie Groups and Subgroups

CHAPTER Ⅶ Metrics

 §1. Definition and Functoriality

 §2. The Metric Group

 §3. Reduction to the Metric Group

 §4. Metric Tubular Neighborhoods

 §5, The Morse Lemma

 §6. The Riemannian Distance

 §7. The Canonical Spray

CHAPTER Ⅷ Integration of Differential Forms

 §1. Sets of Measure 0

 §2, Change of Variables Formula

 §3. Orientation

 §4. The Measure Associated with a Differential Form

CHAPTER Ⅸ Stokes' Theorem,

 §1. Stokes' Theorem for a Rectangular Simplex

 §2. Stokes' Theorem on a Manifold

 §3. Stokes' Theorem with Singularities

CHAPTER Ⅹ Applications of Stokes' Theorem

 §1. The Maximal de Rham Cohomology

 §2. Volume forms and the Divergence

 §3. The Divergence Theorem

 §4. Cauchy's Theorem

 §5. The Residue Theorem

Bibliography

Index

截图
随便看

免责声明
本网站所展示的内容均来源于互联网,本站自身不存储、不制作、不上传任何内容,仅对网络上已公开的信息进行整理与展示。
本站不对所转载内容的真实性、完整性和合法性负责,所有内容仅供学习与参考使用。
若您认为本站展示的内容可能存在侵权或违规情形,请您提供相关权属证明与联系方式,我们将在收到有效通知后第一时间予以删除或屏蔽。
本网站对因使用或依赖本站信息所造成的任何直接或间接损失概不承担责任。联系邮箱:101bt@pm.me