代数拓扑讲义豆瓣PDF电子书bt网盘迅雷下载电子书下载-霍普软件下载网

网站首页   软件下载   游戏下载   翻译软件   电子书下载   电影下载   电视剧下载   教程攻略   音乐专区

请输入您要查询的图书:

霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。

电子书 代数拓扑讲义
分类 电子书下载
作者 (德)多德
出版社 世界图书出版公司
下载 暂无下载
介绍
编辑推荐

This is essentially a book on singular homology and cohomology withspecial emphasis on products and manifolds. It does not treat homotopytheory except for some basic notions, some examples, and some applica-tions of homology to homotopy. Nor does it deal with general(ised)homology, but many formulations and arguments on singular homologyare so chosen that they also apply to general homology. Because of theseabsences I have also omitted spectral sequences, their main applicationsin topology being to homotopy and general homology theory. ech-cohomology is treated in a simple ad hoc fashion for locally compactsubsets of manifolds; a short systematic treatment for arbitrary spaces,emphasizing the universal property of the (ech-procedure, is containedin an appendix.The book grew out of a one-year's course on algebraic topology, and itcan serve as a text for such a course.

目录

Chapter Ⅰ Preliminaries on Categories,Abelian Groups, and Homotopy

 §1 Categories and Functors

 §2 Abelian Groups (Exactness, Direct Sums,Free Abelian Groups)

 §3 Homotopy

Chapter Ⅱ Homology of Complexes

 §1 Complexes

 §2 Connecting Homomorphism,Exact Homology Sequence

 §3 Chain-Homotopy

 §4 Free Complexes

Chapter Ⅲ Singular Homology

 §1 Standard Simplices and Their Linear Maps

 §2 The Singular Complex

 §3 Singular Homology

 §4 Special Cases

 §5 Invariance under Homotopy

 §6 Barycentric Subdivision

 §7 Small Simplices. Excision

 §8 Mayer-Vietoris Sequences

Chapter Ⅳ Applications to Euclidean Space

 §1 Standard Maps between Cells and Spheres

 §2 Homology of Cells and Spheres

 §3 Local Homology

 §4 The Degree of a Map

 §5 Local Degrees

 §6 Homology Properties of Neighborhood Retracts in IRn

 §7 Jordan Theorem, Invariance of Domain

 §8 Euclidean Neighborhood Retracts (ENRs)

Chapter Ⅴ Cellular Decomposition and Cellular Homology

 §1 Cellular Spaces

 §2 CW-Spaces

 §3 Examples

 §4 Homology Properties of CW-Spaces

 §5 The Euler-Poincare Characteristic

 §6 Description of Cellular Chain Maps and of the Cellular Boundary Homomorphism

 §7 Simplicial Spaces

 §8 Simplicial Homology

Chapter Ⅵ Functors of Complexes

 §1 Modules

 §2 Additive Functors

 §3 Derived Functors

 §4 Universal Coefficient Formula

 §5 Tensor and Torsion Products

 §6 Hom and Ext

 §7 Singular Homology and Cohomology with General Coefficient Groups

 §8 Tensorproduct and Bilinearity

 §9 Tensorproduct of Complexes Kunneth Formula

 §10 Horn of Complexes. Homotopy Classification of Chain Maps

 §11 Acyclic Models

 §12 The Eilenberg-Zilber Theorem. Kunneth Formulas for Spaces

Chapter Ⅶ Products

 §1 The Scalar Product

 §2 The Exterior Homology Product

 §3 The Interior Homology Product(Pontrjagin Product

 §4 Intersection Numbers in IRn

 §5 The Fixed Point Index

 §6 The Lefschetz-Hopf Fixed Point Theorem

 §7 The Exterior Cohomology Product

 §8 The Interior Cohomology Product (■-Product)

 §9.■-Products in Projective Spaces.Hopf Maps and Hopf Invariant

 §10 Hopf Algebras

 §ll The Cohomology Slant Product

 §12 The Cap-Product(■-Product)

 §13 The Homology Slant Product,and the Pontrjagin Slant Product Manffolds

Chapter Ⅷ Manifolds

 §l Elementary Properties of Manifolds

 §2 The Orientation Bundle of a Manifold

 §3 Homology of Dimension≧n in n.Manifolds

 §4 Fundamental Class and Degree

 §5 Limits

 §6 Cech Cohomology of Locally Compact Subsets of IRn

 §7 Poincar6-Lefschetz Duality

 §8 Examples,Applications

 §9 Duality in a-Manifolds

 §10 Transfer

 §11 Thom Class,Thorn Isomorphism

 §12 The Gysin Sequence.Examples

 §13 Intersection of Homology Classes Kan.and Cech-Extensions of Functors

Appendix

 §1 Limits of Functors

 §2 Polyhcdtons under a Space,and Partitions of Unity

 §3 Extending Functors from Polyhedrons to more General Spaces Bibliography SubjectIndex

Bibliography

Subject Index

截图
随便看

免责声明
本网站所展示的内容均来源于互联网,本站自身不存储、不制作、不上传任何内容,仅对网络上已公开的信息进行整理与展示。
本站不对所转载内容的真实性、完整性和合法性负责,所有内容仅供学习与参考使用。
若您认为本站展示的内容可能存在侵权或违规情形,请您提供相关权属证明与联系方式,我们将在收到有效通知后第一时间予以删除或屏蔽。
本网站对因使用或依赖本站信息所造成的任何直接或间接损失概不承担责任。联系邮箱:101bt@pm.me