网站首页  软件下载  游戏下载  翻译软件  电子书下载  电影下载  电视剧下载  教程攻略

请输入您要查询的图书:

 

书名 概率论沉思录(英文版)/图灵原版数学统计学系列
分类 科学技术-自然科学-数学
作者 (美)杰恩斯
出版社 人民邮电出版社
下载
简介
编辑推荐

这是一部奇书。它是著名数学物理学家Jaynes的遗作,凝聚了他对概率论长达40年的深刻思考。原版出版后产生了巨大影响,深受众多专家和学者的好评,并获得Amazon网上书店读者全五星评价。

在书中,作者在H.Jeffreys、R.T.Cox、C.E.Shannon和G.Polya等数学大师思想的基础上继续探索,将概率论置于更大的背景下考察,提出将概率推断作为整个科学的逻辑基础,以适应实际科学研究中对象往往都是信息不完全或者不确定的这一难题,从而超越了传统的概率论,也超越了传统的数理逻辑思维定式。

本书将概率和统计推断融合起来,用新颖的观点生动地描述了概率论/贝叶斯理论在物理学、数学、化学、生物学、经济学和社会学等领域中的广泛应用,弥补了其他概率和统计教材的不足。不仅适合概率和统计专业人士阅读。也是需要应用统计推断的各领域科技工作者的必读之作。

内容推荐

本书将概率和统计推断融合在一起,用新的观点生动地描述了概率论在物理学、数学、经济学、化学和生物学等领域中的广泛应用,尤其是它阐述了贝叶斯理论的丰富应用,弥补了其他概率和统计教材的不足。全书分为两大部分。第一部分包括10章内容,讲解抽样理论、假设检验、参数估计等概率论的原理及其初等应用;第二部分包括12章内容,讲解概率论的高级应用,如在物理测量、通信理论中的应用。本书还附有大量习题,内容全面,体例完整。

本书内容不局限于某一特定领域,适合涉及数据分析的各领域工作者阅读,也可作为高年级本科生和研究生相关课程的教材。

目录

Part I Principles and elementary applications

1 Plausible reasoning 3

 1.1 Deductive and plausible reasoning 3

 1.2 Analogies with slcal theories 6

 1.3 The thinking computer 7

 1.4 Introducing the robot 8

 1.5 Boolean algebra 9

 1.6 Adequate sets of operations 12

 1.7 The basic desiderata 17

 1.8 Comments 19

 1.8.1 Common language vs. formal logic 21

 1.8.2 Nitpicking 23

2 The quantitative rules 24

 2.1 The product rule 24

 2.2 The sum rule 30

 2.3 Qualitative properties 35

 2.4 Numerical values 37

 2.5 Notation and finite-sets policy 43

 2.6 Comments 44

 2.6.1 ‘Su ectlve' vs. ‘o ectlve' 44

 2.6.2 G/3del's theorem 45

 2.6.3 Venn diagrams 47

 2.6.4 The ‘Kolmogorov axioms' 49

3 Elementary sampling theory 51

 3.1 Sampling without replacement 52

 3.2 Logic vs. propensity 60

 3.3 Reasoning from less precise information 64

 3.4 Expectations66

 3.5 Other forms and extensions 68

 3.6 Probability as a mathematical tool 68

 3.7 The binomial distribution 69

 3.8 Sampling with replacement 72

 3.8.1 Digression: a sermon on reality vs. models 73

 3.9 Correction for correlations 75

 3.10 Simplification81

 3.11 Comments 82

 3.11.1 A look ahead 84

4 Elementary hypothesis testing 86

 4.1 Prior probabilities 87

 4.2 Testing binary hypotheses with binary data 90

 4.3 Nonextensibility beyond the binary case 97

 4.4 Multiple hypothesis testing 98

 4.4.1 Digression on another derivation 101

 4.5 Continuous probability distribution functions 107

 4.6 Testing an infinite number of hypotheses 109

 4.6.1 Historical digression 112

 4.7 Simple and compound (or composite) hypotheses 115

 4.8 Comments 116

 4.8.1 Etymology 116

 4.8.2 What have we accomplished? 117

5 Queer uses for probability theory 119

 5.1 Extrasensory perception 119

 5.2 Mrs S tewart's telepathic powers 120

 5.2.1 Digression on the normal approximation 122

 5.2.2 Back to Mrs Stewart 122

 5.3 Converging and diverging views 126

 5.4 Visual perception-evolution into Bayesianity? 132

 5.5 The discovery of Neptune 133

 5.5.1 Digression on alternative hypotheses 135

 5.5.2 Back to Newton 137

 5.6 Horse racing and weather forecasting 140

 5.6.1 Discussion 142

 5.7 Paradoxes of intuition 143

 5.8 Bayesian jurisprudence 144

 5.9 Comments 146

 5.9.1 What is queer? 148

6 Elementary parameter estimation 149

 6.1 Inversion of the um distributions 149

 6.2 Both N and R unknown 150

 6.3 Uniform prior 152

 6.4 Predictive distributions 154

 6.5 Truncated uniform priors 157

 6.6 A concave prior 158

 6.7 The binomial monkey prior 160

 6.8 Metamorphosis into continuous parameter estimation 163

 6.9 Estimation with a binomial sampling distribution 163

 6.9.1 Digression on optional stopping 166

 6.10 Compound estimation problems 167

 6.11 A simple Bayesian estimate: quantitative prior information 168

 6.11.1 From posterior distribution function to estimate 172

 6.12 Effects of qualitative prior information 177

 6.13 Choice of a prior 178

 6.14 On with the calculation! 179

 6.15 The Jeffrey s prior 181

 6.16 The point of it all 183

 6.17 Interval estimation 186

 6.18 Calculation of variance 186

 6.19 Generalization and asymptotic forms 188

 6.20 Rectangular sampling distribution 190

 6.21 Small samples192

 6.22 Mathematical trickery 193

 6.23 Comments 195

7 The central, Gaussian or normal distribution 198

 7.1 The gravitating phenomenon 199

 7.2 The Herschel-Maxwell derivation 200

 7.3 The Gauss derivation 202

 7.4 Historical importance of Gauss's result 203

 7.5 The Landon derivation 205

 7.6 Why the ubiquitous use of Gausslan distributions? 207

 7.7 Why the ubiquitous success? 210

 7.8 What estimator should we use? 211

 7.9 Error cancellation 213

 7.10 The near irrelevance of sampling frequency distributions 215

 7.11 The remarkable efficiency of information transfer 216

 7.12 Other sampling distributions 218

 7.13 Nuisance parameters as safety devices 219

 7.14 More general properties 220

 7.15 Convolution of Gaussians 221

 7.16 The central limit theorem 222

 7.17 Accuracy of computations 224

 7.18 Galton's discovery 227

 7.19 Population dynamics and Darwinian evolution 229

 7.20 Evolution of humming-birds and flowers 231

 7.21 Application to economics 233

 7.22 The great inequality of Jupiter and Saturn 234

 7.23 Resolution of distributions into Gaussians 235

 7.24 Hermite polynomial solutions 236

 7.25 Fourier transform relations 238

 7.26 There is hope after all 239

 7.27 Comments 240

 7.27.1 Terminology again 240

8 Sufficiency, ancillarity, and all that 243

 8.1 Sufficiency 243

 8.2 Fisher sufficiency 245

 8.2.1 Examples 246

 8.2.2 The B lackwell-Rao theorem 247

 8.3 Generalized sufficiency 248

 8.4 Sufficiency plus nuisance parameters 249

 8.5 The likelihood principle 250

 8.6 Ancillarity 253

 8.7 Generalized ancillary information 254

 8.8 Asymptotic likelihood: Fisher information 256

 8.9 Combining evidence from different sources 257

 8.10 Pooling the data 260

 8.10.1 Fine-grained propositions 261

 8.11 Sam's broken thermometer 262

 8.12 Comments 264

 8.12.1 The fallacy of sample re-use 264

 8.12.2 A folk theorem 266

 8.12.3 Effect of prior information 267

 8.12.4 Clever tricks and gamesmanship 267

9 Repetitive experiments: probability and frequency 270

 9.1 Physical experiments 271

 9.2 The poorly informed robot 274

 9.3 Induction 276

 9.4 Are there general inductive rules? 277

 9.5 Multiplicity factors 280

 9.6 Partition function algorithms 281

 9.6.1 Solution by inspection 282

 9.7 Entropy algorithms 285

 9.8 Another way of looking at it 289

 9.9 Entropy maximization 290

 9.10 Probability and frequency 292

 9.11 Significance tests 293

 9.11.1 Implied alternatives 296

 9.12 Comparison of psi and chi-squared 300

 9.13 The chi-squared test 302

 9.14 Generalization 304

 9.15 Halley's mortality table 305

 9.16 Comments 310

 9.16.1 The irrationalists 310

 9.16.2 Superstitions 312

 10 Physics of ‘random experiments' 314

 10.1 An interesting correlation 314

 10.2 Historical background 315

 10.3 How to cheat at coin and die tossing 317

 10.3.1 Experimental evidence 320

 10.4 Bridge hands 321

 10.5 General random experiments 324

 10.6 Induction revisited 326

 10.7 But what about quantum theory? 327

 10.8 Mechanics under the clouds 329

 10.9 More on coins and symmetry 331

 10.10 Independence of tosses 335

 10.11 The arrogance of the uninformed 338

Part Ⅱ Advanced applications

11 Discrete prior probabilities: the entropy principle 343

 11.1 A new kind of prior information 343

 11.2 Minimum ∑Pi2 345

 11.3 Entropy: Shannon's theorem 346

 11.4 The Wallis derivation 351

 11.5 An example 354

 11.6 Generalization: a more rigorous proof 355

 11.7 Formal properties of maximum entropy distributions 358

 11.8 Conceptual problems-frequency correspondence 365

 11.9 Comments 370

12 Ignorance priors and transformation groups 372

 12.1 What are we trying to do? 372

 12.2 Ignorance priors 374

 12.3 Continuous distributions 374

 12.4 Transformation groups 378

 12.4.1 Location and scale parameters 378

 12.4.2 A Poisson rate 382

 12.4.3 Unknown probability for success 382

 12.4.4 Bertrand's problem 386

 12.5 Comments 394

13 Decision theory, historical background 397

 13.1 Inference vs. decision 397

 13.2 Daniel Bernoulli's suggestion 398

 13.3 The rationale of insurance 400

 13.4 Entropy and utility 402

 13.5 The honest weatherman 402

 13.6 Reactions to Daniel Bernoulli and Laplace 404

 13.7 Wald's decision theory 406

 13.8 Parameter estimation for minimum loss 410

 13.9 Reformulation of the problem 412

 13.10 Effect of varying loss functions 415

 13.11 General decision theory 417

 13.12 Comments 418

 13.12.1 ‘Objectivity' of decision theory 418

 13.12.2 Loss functions in human society 421

 13.12.3 A new look at the Jeffreys prior 423

 13.12.4 Decision theory is not fundamental 423

 13.12.5 Another dimension? 424

14 Simple applications of decision theory 426

 14.1 Definitions and preliminaries 426

 14.2 Sufficiency and information 428

 14.3 Loss functions and criteria of optimum performance 430

 14.4 A discrete example 432

 14.5 How would our robot do it? 437

 14.6 Historical remarks 438

 14.6.1 The classical matched filter 439

 14.7 The widget problem 440

 14.7.1 Solution for Stage 2 443

 14.7.2 Solution for Stage 3 44 5

 14.7.3 Solution for Stage 4 44 9

 14.8 Comments 450

15 Paradoxes of probability theory 451

 15.1 How do paradoxes survive and grow? 451

 15.2 Summing a series the easy way 452

 15.3 Nonconglomerability 453

 15.4 The tumbling tetrahedra 456

 15.5 Solution for a finite number of tosses 459

 15.6 Finite vs. countable additivity 464

 15.7 The Borel-Kolmogorov paradox 467

 15.8 The marginalization paradox 470

 15.8.1 On to greater disasters 474

 15.9 Discussion 478

 15.9.1 The DSZ Example #5 480

 15.9.2 Summary 483

 15.10 A useful result after all? 484

 15.11 How to mass-produce paradoxes 485

 15.12 Comments 486

16 Orthodox methods: historical background 490

 16.1 The early problems 490

 16.2 Sociology of orthodox statistics 492

 16.3 Ronald Fisher, Harold Jeffreys, and Jerzy Neyman 493

 16.4 Pre-data and post-data considerations 499

 16.5 The sampling distribution for an estimator 500

 16.6 Pro-causal and anti-causal bias 503

 16.7 What is real, the probability or the phenomenon? 505

 16.8 Comments 506

 16.8.1 Communication difficulties 507

17 Principles and pathology of orthodox statistics 509

 17.1 Information loss 510

 17.2 Unbiased estimators 511

 17.3 Pathology of an unbiased estimate 516

 17.4 The fundamental inequality of the sampling variance 518

 17.5 Periodicity: the weather in Central Park 520

 17.5.1 The folly of pre-filtering data 521

 17.6. A Bayesian analysis 527

 17.7 The folly of randomization 531

 17.8 Fisher: common sense at Rothamsted 532

 17.8.1 The Bayesian safety device 532

 17.9 Missing data533

 17.10 Trend and seasonality in time series 534

 17.10.1 Orthodox methods 535

 17.10.2 The Bayesian method 536

 17.10.3 Comparison of Bayesian and orthodox estimates 540

 17.10.4 An improved orthodox estimate 541

 17.10.5 The orthodox criterion of performance 544

 17.11 The general case 545

 17.12 Comments 550

18 The Ap distribution and rule of succession 553

 18.1 Memory storage for old robots 553

 18.2 Relevance 555

 18.3 A surprising consequence 557

 18.4 Outer and inner robots 559

 18.5 An application 561

 18.6 Laplace's rule of succession 563

 18.7 Jeffreys' objection 566

 18.8 Bass or carp? 567

 18.9 So where does this leave the rule? 568

 18.10 Generalization 568

 18.11 Confirmation and weight of evidence 571

 18.11.1 Is indifference based on knowledge or ignorance? 573

 18.12 Camap's inductive methods 574

 18.13 Probability and frequency in exchangeable sequences 576

 18.14 Prediction of frequencies 576

 18.15 One-dimensional neutron multiplication 579

 18.15.1 The frequentist solution 579

 18.15.2 The Laplace solution 581

 18.16 The de Finetti theorem 586

 18.17 Comments 588

19 Physical measurements 589

 19.1 Reduction of equations of condition 589

 19.2 Reformulation as a decision problem 592

 19.2.1 Sermon on Gaussian error distributions 592

 19.3 The underdetermined case: K is singular 594

 19.4 The overdetermined case: K can be made nonsingular 595

 19.5 Numerical evaluation of the result 596

 19.6 Accuracy of the estimates 597

 19.7 Comments 599

 19.7.1 A paradox 599

20 Model comparison601

 20.1 Formulation of the problem 602

 20.2 The fair judge and the cruel realist 603

 20.2.1 Parameters known in advance 604

 20.2.2 Parameters unknown 604

 20.3 But where is the idea of simplicity? 605

 20.4 An example: linear response models 607

 20.4.1 Digression: the old sermon still another time 608

 20.5 Comments 613

 20.5.1 Final causes 614

21 Outliers and robustness 615

 21.1 The experimenter's dilemma 615

 21.2 Robustness 617

 21.3 The two-model model 619

 21.4 Exchangeable selection 620

 21.5 The general Bayesian solution 622

 21.6 Pure outliers624

 21.7 One receding datum 625

22 Introduction to communication theory 627

 22.1 Origins of the theory 627

 22.2 The noiseless channel 628

 22.3 The information source 634

 22.4 Does the English language have statistical properties? 636

 22.5 Optimum encoding: letter frequencies known 638

 22.6 Better encoding from knowledge of digram frequencies 641

 22.7 Relation to a stochastic model 644

 22.8 The noisy channel 648

Appendix A Other approaches to probability theory 651

Appendix B Mathematical formalities and style 661

Appendix C Convolutions and cumulants 677

随便看

 

霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。

 

Copyright © 2002-2024 101bt.net All Rights Reserved
更新时间:2025/4/4 22:07:38