路径积分作为重要的量子化手段在规范场理论的发展中起着极为重要的作用,同时在量子力学、统计物理和高分子物理研究中也有着广泛的应用。本书是作者积多年教学和研究之经验而写成的,它讨论了路径积分的原理、性质、解法及其应用。本书初版于1990年,第2版对许多章节都作了较大的修改和补充,并新增加了“相对论性粒子轨道的路径积分“一章。
本书为英文版。
1 Fundamentals
1.1 Classical Mechanics
1.2 Quantum Mechanics
1.3 Dirac's Bra-Ket Formalism
1.4 Boservables
1.5 Quantum Mechanics of General Lagrangian Systems
1.6 Particle on the Surface of a Sphere
1.7 Spinning Top
1.8 Time Evolution Operator
1.9 Properties of the Time Evolution Operator
1.10 Heisenberg Picture of Quantum Mechanics
1.11 Classical and Quantum Statistics
Appendix 1A The Asymmetric Top
Notes and References
2 Path Integrals-Elementary Properties and Simple Solutions
3 External Sources,Correlations,and Prturbation Theory
4 Semicalssical Time Evolution Amplitued
5 Variational Perturbaion Theory
6 Path Integrals with Topological Constraints
7 Many Particle Orbits-Statistics and Second Quantization
8 Path Integrals in Spherical Coordinates
9 Fixed-Energy Amplitude and Wave Functions
10 Short-Time Amplitude in Spaces with Curvature and Torsion
11 Schrodinger Equation in General Metric-Affine Sapces
12 New Path Integral Formula for Singular Potentials
13 Path Integral of the Coulomb System
14 Solution of Futher Path Ingerals by the Duru-Kleinert Method
15 Path Integrals in Polymer Physics
16 Polymers and Particle Orbits in Multiply Connected Spaces
17 Path Integrals and Tunneling
18 Path Integrals and Nonequilibrium Quantum Statistics
19 Path Integrals for Relativistic Particle Orbits
Index