本书是剑桥大学出版社的一本较新的大学生量子力学教材,是Levin教授多年来在Brown大学为大学生和研究生讲授量子力学课程的教学经验之结晶。本书内容系统全面;论述方法简明清晰,并配有实例;每章后都附有大量的习题,书后有附录和参考文献,是一本非常好的教科书。本书内容分4部分,共18章。
本书读者对象为大学生、教师和研究生。
Preface
PART Ⅰ:INTRODUCTIORY
Chapter 1 The Need for a Non-Classical Description of Microscopic Phenomena
1.1 Photons
1.2 Quantization of Energy and Angular Momenturm
1.3 The Wave Nature of Matter
Exercises
Chapter 2 Classical Concepts and Quantal Inequivalences
2.1 Parties
2.2 Coordinate Systems:Positions:Velocities Momenta
2.3 Dynamical Equations,Generalized Coordinates and Conserved Quantities
2.4 Potentials and Limits of Motion
2.5 States of a System
2.6 Measuements and Uncertainty
Exercises
Chapter 3 Introducing Quantum Mechanics:A Comparison of the Classical Strtched Stiring and The Quantal Box
Chapter 4 Mathematical Background
PART Ⅱ The Postulates of Quantum Mechanics
Chapter 5 The Postulates of Quantum Mechanics
Chapter 6 Applications of the Postulates:Bound States in One Dimension
Chapter 7 Application of the Postulates:Continuum States in One Dimesion
Chapter 8 Quantal/Classical Connections
Chapter 9 Commutin Operators,Quantum Numbers Symmetry Properties
PART Ⅲ SYSTEMS WITH FEW DEGREES OF FREEDOM
Chapter 10 Orbital Angular Momentum
Chapter 11 Two-Particle Systems,Potential-Well Bound State Problems
Chapter 12 Electromanetic Feilds
Chapter 13 Intrinsic Spin,Two-State Systems
Chapter 14 Generalized Angular Momentum and the Coupling of Angular Momenta
Chapter 15 Three-Dimensional Continuum States/Scattering
PART Ⅳ COMPLEX SYSTEMS
Chapter 16 Time-Dependent Approximation Methods
Chapter 17 Time-Independent Approximation Methods
Chapter 18 Many Degrees of Freedom:Atoms and Molecules
Appendix A Elements of Probability Theory
Appendix B Fourier Series and Interias
Appendix C Solution of Legendre's Equation
Appendix D Fundamental and Derived Quantities:Conversion Factors
References
Index