本书为“天元基金影印数学丛书”之一。全书内容分为三部分:建模,讲述了建模的一些原则(包括物理定律、本构关系及守恒定律),量纲分析(包括Bucklngham的Pi-定理)等;分析技巧,讲述了偏微分方程和广义函数的基础知识;渐近分析,讲述了渐近展开的基本概念,正则摄动展开,边界层和多重尺度法等。每部分均介绍了一些生动有趣的例子。
网站首页 软件下载 游戏下载 翻译软件 电子书下载 电影下载 电视剧下载 教程攻略
书名 | 实用数学(建模分析逼近影印版)/天元基金影印数学丛书 |
分类 | 科学技术-自然科学-数学 |
作者 | (英)豪伊森 |
出版社 | 高等教育出版社 |
下载 | ![]() |
简介 | 编辑推荐 本书为“天元基金影印数学丛书”之一。全书内容分为三部分:建模,讲述了建模的一些原则(包括物理定律、本构关系及守恒定律),量纲分析(包括Bucklngham的Pi-定理)等;分析技巧,讲述了偏微分方程和广义函数的基础知识;渐近分析,讲述了渐近展开的基本概念,正则摄动展开,边界层和多重尺度法等。每部分均介绍了一些生动有趣的例子。 内容推荐 本书是作者总结自己与工程界、科学界相互配合的研究工作中遇到的问题及解决问题的方法而写成的,偏重于宏观范围的物理世界的问题。本书内容分为三部分:建模,讲述了建模的一些原则(包括物理定律、本构关系及守恒定律),量纲分析(包括Bucklngham的Pi-定理)等;分析技巧,讲述了偏微分方程和广义函数的基础知识;渐近分析,讲述了渐近展开的基本概念,正则摄动展开,边界层和多重尺度法等。每部分均介绍了一些生动有趣的例子。 本书可作为高等学校本科高年级和研究生课程教材。对于具有微积分、向量分析、质点动力学初步、无粘流体力学和偏微分方程初步知识的读者,也是一本很好的建模理论的教材。 目录 Preface Part Ⅰ Modelling techniques 1 The basics of modelling 1.1 Introduction 1.2 What do we mean by a model? 1.3 Principles of modelling: physical laws and constitutive relations 1.4 Conservation laws 1.5 General remarks 1.6 Exercises 2 Units, dimensions and dimensional analysis 2.1 Introduction 2.2 Units and dimensions 2.3 Electric fields and electrostatics 2.4 Sources and further reading 2.5 Exercises 3 Nondimensionalisation 3.1 Nondimensionalisation and dimensionless parameters 3.2 The Navier-Stokes equations and Reynolds numbers 3.3 Buckingham's Pi-theorem 3.4 Sources and further reading 3.5 Exercises 4 Case studies: hair modelling and cable laying 4.1 The Euler-Bernoulli model for a beam 4.2 Hair modelling 4.3 Undersea cable laying 4.4 Modelling and analysis 4.5 Sources and further reading 4.6 Exercise 5 Case study: the thermistor (1) 5.1 Heat and current flow in thermistors 5.2 Nondimensionalisation 5.3 A thermistor in a circuit 5.4 Sources and further reading 5.5 Exercises 6 Case study: electrostatic painting 6.1 Electrostatic painting 6.2 Field equations 6.3 Boundary conditions 6.4 Nondimensionalisation 6.5 Sources and further reading 6.6 Exercises Part Ⅱ Analytical techniques 7 Partial differential equations 7.1 First-order quasilinear partial differential equations: theory 7.2 Example: Poisson processes 7.3 Shocks 7.4 Fully nonlinear equations: Charpit's method 7.5 Second-order linear equations in two variables 7.6 Further reading 7.7 Exercises 8 Case study: traffic modelling 8.1 Simple models for traffic flow 8.2 Traffic jams and other discontinuous solutions 8.3 More sophisticated models 8.4 Sources and further reading 8.5 Exercises 9 The delta function and other distributions 9.1 Introduction 9.2 A point force on a stretched string; impulses 9.3 Informal definition of the delta and Heaviside functions 9.4 Examples 9.5 Balancing singularities 9.6 Green's functions 9.7 Sources and further reading 9.8 Exercises 10 Theory of distributions 10.1 Test functions 10.2 The action of a test function 10.3 Definition of a distribution 10.4 Further properties of distributions 10.5 The derivative of a distribution 10.6 Extensions of the theory of distributions 10.7 Sources and further reading 10.8 Exercises 11 Case study: the pantograph 11.1 What is a pantograph? 11.2 The model 11.3 Impulsive attachment for an undamped pantograph 11.4 Solution near a support 11.5 Solution for a whole span 11.6 Sources and further reading 11.7 Exercises Part Ⅲ Asymptotic techniques 12 Asymptotic expansions 12.1 Introduction 12.2 Order notation 12.3 Convergence and divergence 12.4 Further reading 12.5 Exercises 13 Regular perturbation expansions 13.1 Introduction 13.2 Example: stability of a spacecraft in orbit 13.3 Linear stability 13.4 Example: the pendulum 13.5 Small perturbations of a boundary 13.6 Caveat expandator 13.7 Exercises 14 Case study: electrostatic painting (2) 14.1 Small parameters in the electropaint model 14.2 Exercises 15 Case study: piano tuning 15.1 The notes of a piano: the tonal system of Western music 15.2 Tuning an ideal piano 15.3 A real piano 15.4 Sources and further reading 15.5 Exercises 16 Boundary layers 16.1 Introduction 16.2 Functions with boundary layers; matching 16.3 Examples from ordinary differential equations 16.4 Case study: cable laying 16.5 Examples for partial differential equations 16.6 Exercises 17 Case study: the thermistor (2) 17.1 Strongly temperature-dependent conductivity 17.2 Exercises 18 Lubrication theory' analysis in long thin domains 18.1 Lubrication theory' approximations: slender geometries 18.2 Heat flow in a bar of variable cross-section 18.3 Heat flow in a long thin domain with cooling 18.4 Advection-diffusion in a long thin domain 18.5 Exercises 19 Case study: continuous casting of steel 19.1 Continuous casting of steel 19.2 Exercises 20 Lubrication theory for fluids 20.1 Thin fluid layers: classical lubrication theory 20.2 Thin viscous fluid sheets on solid substrates 20.3 Thin fluid sheets and fibres 20.4 Further reading 20.5 Exercises 21 Case study: turning of eggs during incubation 21.1 Incubating eggs 21.2 Modelling 21.3 Exercises 22 Multiple scales and other methods for nonlinear oscillators 22.1 The Poincare-Linstedt method 22.2 The method of multiple scales 22.3 Relaxation oscillations 22.4 Exercises 23 Ray theory and the WKB method 23.1 Introduction 23.2 Classical WKB theory 23.3 Geometric optics and ray theory: why do we say light travels in straight lines? 23.4 Kelvin's ship waves 23.5 Exercises References Index |
随便看 |
|
霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。