本书从理论和实际应用出发,全面系统地介绍神经网络的基本模型、基本方法和基本技术,涵盖了神经系统科学、统计模式识别、支撑向量机、模糊系统、软件计算与动态系统等内容。对所有模型不仅给出了实际的应用示例,还提供了详细的MATHLAB代码,是一本很好的神经网络教材。
本书适合作为相关专业研究生或本科高年级学生的教材,也是神经网络的科研人员的参考书。
网站首页 软件下载 游戏下载 翻译软件 电子书下载 电影下载 电视剧下载 教程攻略
书名 | 神经网络(影印版)/大学计算机教育国外著名教材系列 |
分类 | |
作者 | (印)库马尔 |
出版社 | 清华大学出版社 |
下载 | ![]() |
简介 | 编辑推荐 本书从理论和实际应用出发,全面系统地介绍神经网络的基本模型、基本方法和基本技术,涵盖了神经系统科学、统计模式识别、支撑向量机、模糊系统、软件计算与动态系统等内容。对所有模型不仅给出了实际的应用示例,还提供了详细的MATHLAB代码,是一本很好的神经网络教材。 本书适合作为相关专业研究生或本科高年级学生的教材,也是神经网络的科研人员的参考书。 内容推荐 本书从理论和实际应用出发,全面系统地介绍神经网络的基本模型、基本方法和基本技术,涵盖了神经系统科学、统计模式识别、支撑向量机、模糊系统、软件计算与动态系统等内容。本书对神经网络的各种基本模型做了深入研究,对神经网络的最新发展趋势和主要研究方向也都进行了全面而综合的介绍,每章都包含大量例题、习题,对所有模型不仅给出了实际的应用示例,还提供了详细的MATHLAB代码,是一本很好的神经网络教材。 本书适合作为相关专业研究生或本科高年级学生的教材,也是神经网络的科研人员的参考书。 目录 Foreword xi Prefac xiii More Acknowledgements xxi Part I Traces of History and A Neuroscience Briefer 1. Brain Style Computing: Origins and Issues 3 1.1 From the Greeks to the Renaissance 3 1.2 The Advent of Modern Neuroscience 6 1.3 On the Road to Artificial Intelligence 9 1.4 Classical AI and Neural Networks 12 1.5 Hybrid Intelligent Systems 14 Chapter Summary 15 Bibliographic Remarks 16 2. Lessons from Neuroscience 17 2.1 The Human Brain 17 2.2 Biological Neurons 23 Chapter Summary 37 Bibliographic Remarks 38 Part II Feedforward Neural Networks and Supervised Learning 3. Artificial Neurons, Neural Networks and Architectures 41 3.1 Neuron Abstraction 41 3.2 Neuron Signal Functions 44 3.3 Mathematical Preliminaries 53 3.4 Neural Networks Defined 61 3.5 Architectures: Feedforward and Feedback 62 3.6 Salient Properties and Application Domains of Neural Networks 65 Chapter Summary 68 Bibliographic Remarks 69 Review Questions 69 4. Geometry of Binary Threshold Neurons and Their Networks 72 4.1 Pattern Recognition and Data Classification 72 4.2 Convex Sets, Convex Hulls and Linear Separability 76 4.3 Space of Boolean Functions 78 4.4 Binary Neurons are Pattern Dichotomizers 80 4.5 Non-linearly Separable Problems 83 4.6 Capacity of a Simple Threshold Logic Neuron 87 4.7 Revisiting the XOR Problem 92 4.8 Multilayer Networks 95 4.9 How Many Hidden Nodes are Enough? 97 Chapter Summary 99 Bibliographic Remarks 100 Review Questions 100 5. Supervised Learning I: Perceptrons and LMS 104 5.1 Learning and Memory 104 5.2 From Synapses to Behaviour: The Case of Aplysia 106 5.3 Learning Algorithms 110 5.4 Error Correction and Gradient Descent Rules 114 5.5 The Learning Objective for TLNs 115 5.6 Pattern Space and Weight Space 117 5.7 Perceptron Learning Algorithm 19 5.8 Perceptron Convergence Theorem 122 5.9 A Handworked Example and MATLAB Simulation 125 5.10 Perceptron Learning and Non-separable Sets 128 5.11 Handling Linearly Non-separable Sets 130 5.12 .–Least Mean Square Learning 132 5.13 MSE Error Surface and its Geometry 137 5.14 Steepest Descent Search with Exact Gradient Information 143 5.15 .–LMS: Approximate Gradient Descent 147 5.16 Application of LMS to Noise Cancellation 152 Chapter Summary 156 Bibliographic Remarks 157 Review Questions 158 6. Supervised Learning II: Backpropagation and Beyond 164 6.1 Multilayered Network Architectures 164 6.2 Backpropagation Learning Algorithm 167 6.3 Handworked Example 177 6.4 MATLAB Simulation Examples 181 6.5 Practical Considerations in Implementing the BP Algorithm 187 6.6 Structure Growing Algorithms 196 ix 6.7 Fast Relatives of Backpropagation 198 6.8 Universal Function Approximation and Neural Networks 199 6.9 Applications of Feedforward Neural Networks 201 6.10 Reinforcement Learning: A Brief Review 205 Chapter Summary 212 Bibliographic Remarks 213 Review Questions 214 7. Neural Networks: A Statistical Pattern Recognition Perspective 218 7.1 Introduction 218 7.2 Bayes’ Theorem 219 7.3 Two Instructive MATLAB Simulations 222 7.4 Implementing Classification Decisions with Bayes’ Theorem 227 7.5 Probabilistic Interpretation of a Neuron Discriminant Function 230 7.6 MATLAB Simulation: Plotting Bayesian Decision Boundaries 232 7.7 Interpreting Neuron Signals as Probabilities 236 7.8 Multilayered Networks, Error Functions and Posterior Probabilities 239 7.9 Error Functions for Classification Problems 245 Chapter Summary 254 Bibliographic Remarks 255 Review Questions 255 8. Focussing on Generalization: Support Vector Machines and Radial Basis Function Networks 259 8.1 Learning From Examples and Generalization 259 8.2 Statistical Learning Theory Briefer 264 8.3 Support Vector Machines 273 8.4 Radial Basis Function Networks 304 8.5 Regularization Theory Route to RBFNs 314 8.6 Generalized Radial Basis Function Network 323 8.7 Learning in RBFN’s 326 8.8 Image Classification Application 329 8.9 Other Models For Valid Generalization 334 Chapter Summary 339 Bibliographic Remarks 341 Review Questions 341 Part III Recurrent Neurodynamical Systems 9. Dynamical Systems Review 347 9.1 States, State Vectors and Dynamics 347 x 9.2 State Equations 350 9.3 Attractors and Stability 352 9.4 Linear Dynamical Systems 354 9.5 Non-linear Dynamical Systems 358 9.6 Lyapunov Stability 363 9.7 Neurodynamical Systems 369 9.8 The Cohen-Grossberg Theorem 373 Chapter Summary 375 Bibliographic Remarks 376 Review Questions 376 10. Attractor Neural Networks 378 10.1 Introduction 378 10.2 Associative Learning 379 10.3 Attractor Neural Network Associative Memory 382 10.4 Linear Associative Memory 386 10.5 Hopfield Network 389 10.6 Content Addressable Memory 397 10.7 Two Handworked Examples 400 10.8 Example of Recall of Memories in Continuous Time 404 10.9 Spurious Attractors 405 10.10 Error Correction with Bipolar Encoding 407 10.11 Error Performance of Hopfield Networks 409 10.12 Applications of Hopfield Networks 412 10.13 Brain-State-in-a-Box Neural Network 419 10.14 Simulated Annealing 426 10.15 Boltzmann Machine 431 10.16 Bidirectional Associative Memory 440 10.17 Handworked Example 443 10.18 BAM Stability Analysis 447 10.19 Error Correction in BAMs 448 10.20 Memory Annihilation of Structured Maps in BAMs 450 10.21 Continuous BAMs 457 10.22 Adaptive BAMs 458 10.23 Application: Pattern Association 461 Chapter Summary 462 Bibliographic Remarks 464 Review Questions 464 11. Adaptive Resonance Theory 469 11.1 Noise-Saturation Dilemma 469 11.2 Solving the Noise-Saturation Dilemma 471 11.3 Recurrent On-center–Off-surround Networks 477 11.4 Building Blocks of Adaptive Resonance 482 xi 11.5 Substrate of Resonance 487 11.6 Structural Details of the Resonance Model 489 11.7 Adaptive Resonance Theory I (ART I) 491 11.8 Handworked Example 502 11.9 MATLAB Code Description 504 11.10 A Breezy Review of ART Operating Principles 506 11.11 Neurophysiological Evidence for ART Mechanisms 507 11.12 Applications 511 Chapter Summary 516 Bibliographic Remarks 517 Review Questions 518 12. Towards the Self-organizing Feature Map 521 12.1 Self-organization 521 12.2 Maximal Eigenvector Filtering 522 12.3 Extracting Principal Components: Sanger’s Rule 530 12.4 Generalized Learning Laws 532 12.5 Competitive Learning Revisited 537 12.6 Vector Quantization 540 12.7 Mexican Hat Networks 546 12.8 Self-organizing Feature Maps 552 12.9 Applications of the Self Organizing Map 563 Chapter Summary 569 Bibliographic Remarks 570 Review Questions 571 Part IV Contemporary Topics 13. Pulsed Neuron Models: The New Generation 577 13.1 Introduction 577 13.2 Spiking Neuron Model 578 13.3 Integrate-and-Fire Neurons 586 13.4 Conductance Based Models 594 13.5 Computing with Spiking Neurons 608 13.6 Reflections . 616 Chapter Summary 617 Bibliographic Remarks 618 14. Fuzzy Sets, Fuzzy Systems and Applications 620 14.1 Need for Numeric and Linguistic Processing 620 14.2 Fuzzy Uncertainty and the Linguistic Variable 621 14.3 Fuzzy Set 622 14.4 Membership Functions 624 xii 14.5 Geometry of Fuzzy Sets 627 14.6 Simple Operations on Fuzzy Sets 628 14.7 Fuzzy Rules for Approximate Reasoning 632 14.8 Rule Composition and Deffuzification 634 14.9 Fuzzy Engineering 638 14.10 Applications 644 Chapter Summary 649 Bibliographic Remarks 650 Review Questions 650 15. Neural Networks and the Soft Computing Paradigm 652 15.1 Soft Computing = Neural + Fuzzy + Evolutionary 652 15.2 Neural Networks: A Summary 654 15.3 Fuzzy Sets and Systems: A Summary 656 15.4 Genetic Algorithms 658 15.5 Neural Networks and Fuzzy Logic 662 15.6 Neuro-Fuzzy-Genetic Integration 671 15.7 Integration Example: Subsethood-Product Based Fuzzy–Neural Inference System 675 15.8 A Concluding Note 683 Chapter Summary 684 Bibliographic Remarks 685 Appendix A: Neural Network Hardware 686 A.1 Motivation and Issues 686 A.2 Analog Building Blocks for Neuromorphic Networks 687 A.3 Digital Techniques 691 A.4 Bibliographic Remarks 692 Appendix B: Web Pointers 694 Bibliography 697 Index 729 |
随便看 |
|
霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。