内容推荐 生成式建模(generative modeling)是人工智能领域热门的研究课题之一。现在算法已经可以教一台机器在绘画、写作和作曲等人类活动中取得出色的表现。通过这本实用指南,机器学习工程师和数据科学家们将学会如何通过生成式深度学习模型重新创建一些令人印象深刻的程序示例,例如变分自编码器、生成对抗网络、编码器一解码器模型和世界模型。作者David Foster在书中演示了每种技术的内部工作原理,首先介绍了使用Keras进行深度学习的基本知识,然后介绍了该领域优选的一些算法。通过书中的提示和技巧,你将了解如何使模型更有效地学习并变得更有创造性。 探索变分自编码器如何改变照片中的人脸表情从头开始构建实用的GAN示例,包括用于样式转换的CycleGAN和用于音乐生成的MuseGAN算法创建循环生成式模型实现文本生成,并学习如何使用注意力改进模型了解生成式模型如何借助并行代理在强化学习环境中完成任务探索Transformer(BERT,GPT-2)模型架构以及ProGAN和StyleGAN等图像生成模型。 目录 Preface Part Ⅰ Introduction to Generative Deep Learning 1.Generative Modeling What Is Generative Modeling? Generative Versus Discriminative Modeling Advances in Machine Learning The Rise of Generative Modeling The Generative Modeling Framework Probabilistic Generative Models Hello Wrodl! Your First Probabilistic Generative Model Naive Bayes Hello Wrodl! Continued The Challenges of Generative Modeling Representation Learning Setting Up Your Environment Summary 2.Deep Learning Structured and Unstructured Data Deep Neural Networks Keras and TensorFlow Your First Deep Neural Network Loading the Data Building the Model Compiling the Model Training the Model Evaluating the Model Improving the Model Convolutional Layers Batch Normalization Dropout Layers Putting It All Together Summary 3.Variational Autoencoflers The Art Exhibition Autoencoders Your First Autoencoder The Encoder The Decoder Joining the Encoder to the Decoder Analysis of the Autoencoder The Variational Art Exhibition Building a Variational Autoencoder The Encoder The Loss Function Analysis of the Variational Autoencoder Using VAEs to Generate Faces Training the VAE Analysis of the VAE Generating New Faces …… |