内容推荐 本书主要阐述有限元法基础理论,通过介绍有限元法的基本概念和关键技术,使读者建立该方法的知识体系。本书主要内容包括:有限元法概述、弹性力学基本理论、等效积分弱形式、单元和形函数、等参单元和数值积分、弹性力学问题的有限元求解格式、线性代数方程组的解法、误差估计和自适应分析、有限元法程序。为便于教与学,书中加入了与知识点配套的课后习题、编程作业、参考答案和计算程序。另外,本书配有电子课件,读者可直接联系作者索取(wangyl@cumtb.edu.cn)。 本书可作为工程力学、土木工程、采矿工程等专业本科生和研究生的教材,亦可作为相关领域研究人员的参考书。 目录 Chapter 1 Introduction of Finite Element Method 1.1 Development Process of Finite Element Method 1.2 Computation Procedure of Finite Element Method 1.3 Main Contents of the Book 1.4 Exercises Chapter 2 Fundamentals of Elasticity Mechanics 2.1 Displacements 2.2 Strains 2.3 Stresses 2.4 Geometric Equations 2.5 Constitutive Equations 2.6 Equilibrium Equations 2.6.1 Three-Dimensional Problems 2.6.2 Two-Dimensional Plane Stress and Strain Problems 2.6.3 Two-Dimensional Axisymmetric Problems 2.7 Boundary Conditions 2.8 Exercises Chapter 3 Weak Form of Equivalent Integration 3.1 Weak Form of Equivalent Integration for Differential Equations 3.2 Weak Form of One-Dimensional Elasticity Problems 3.3 Finite Element Computation Based on Weak Form 3.3.1 Galerkin Method 3.3.2 Finite Element Computation 3.4 Global Assembly from One-Dimensional Elements 3.5 Treatments on Boundary Conditions 3.6 Exercises Chapter 4 Elements and Shape Functions 4.1 One-Dimensional Lagrange Element 4.1.1 Linear Element with Two Nodes 4.1.2 Higher-Order Lagrange Element 4.1.3 Quadratic Lagrange Element 4.2 Two-Dimensional Triangle Element 4.2.1 Triangle with Three Nodes 4.2.2 Higher-Order Triangle Element 4.2.3 Quadratic Triangle Element 4.2.4 Cubic Triangle Element 4.3 Two-Dimensional Rectangle Element 4.3.1 Linear Rectangle Element with Four Nodes 4.3.2 Higher-Order Rectangle Element 4.3.3 Quadratic Rectangle Element 4.4 Three-Dimensional Tetrahedron Element 4.4.1 Linear Tetrahedron Element with Four Nodes 4.4.2 Higher-Order Tetrahedron Element 4.4.3 Quadratic Tetrahedron Element 4.4.4 Cubic Tetrahedron Element 4.5 Three-Dimensional Hexahedron Element 4.5.1 Hexahedron with Eight Nodes 4.5.2 Higher-Order Hexahedron Element 4.5.3 Quadratic Hexahedron Element 4.6 Exercises Chapter 5 Isoparametric Element and Numerical Integration 5.1 Isoparametric Element 5.1.1 One-Dimensional Isoparametric Lagrange Element 5.1.2 Two-Dimensional Isoparametric Triangle Element 5.1.3 Two-Dimensional Isoparametric Rectangle Element 5.1.4 Three-Dimensional Isoparametric Tetrahedron Element 5.1.5 Three-Dimensional Isoparametric Hexahedron Element 5.1.6 Requirements of Isoparametric Element 5.2 Numerical Integration 5.2.1 One-Dimensional Integration for Lagrange Element 5.2.2 Two-Dimensional Integration for Triangle Element 5.2.3 Two-Dimensional Integration for Rectangle Element 5.2.4 Three-Dimensional Integration for Tetrahedron Element 5.2.5 Three-Dimensional Integration for Hexahedron Element 5.2.6 Required Order of Numerical Integration 5.3 Exercises Chapter 6 Finite Element Computation Scheme of Elasticity Problems 6.1 Weak Form for General Elasticity Problems 6.2 Finite Element Method for Solving Elasticity Problems 6.3 Global Assembly from High-Dimensional Elements 6.4 Treatments on Boundary Conditions 6.5 Exercises Chapter 7 Solutions of Linear Algebraic Equations 7.1 LU Decomposition Method 7.2 Exercises Chapter 8 Error Estimation and Adaptive Analysis 8.1 Error Estimation of Finite Element Solutions 8.1.1 Error of Finite Element Solutions 8.1.2 Superconvergent Patch Recovery Method 8.2 Adaptive Finite Element Method 8.2.1 Categories of Adaptive Finite Element Method 8.2.2 h-Version Adaptive Finite Element Method 8.2.3 hp-Version Adaptive Finite Element Method 8.3 Exercises Chapter 9 Programs of Finite Element Method 9.1 One-Dimensional Program of Beam Deformation 9.1.1 Main Program 9.1.2 Numerical Example 9.1.3 Interactive Interface 9.2 Two-Dimensional Program of Plane Strain Problem 9.2.1 Main Program 9.2.2 Numerical Example 9.2.3 Interacti |