这是一本介绍用OpenAI Gym构建智能体的实战指南。全书先简要介绍智能体和学习环境的一些入门知识,概述强化学习和深度强化学习的基本概念和知识点,然后重点介绍OpenAI Gym的相关内容,随后在具体的Gym环境中运用强化学习算法构建智能体。本书还探讨了这些算法在游戏、自动驾驶领域的应用。
本书适合想用OpenAI Gym构建智能体的读者阅读,也适合对强化学习和深度强化学习感兴趣的读者参考。读者应具备一定的Python编程基础。
网站首页 软件下载 游戏下载 翻译软件 电子书下载 电影下载 电视剧下载 教程攻略
书名 | 深度强化学习实战--用OpenAI Gym构建智能体/深度学习系列 |
分类 | |
作者 | (印)普拉文·巴拉尼沙米 |
出版社 | 人民邮电出版社 |
下载 | |
简介 | 内容推荐 这是一本介绍用OpenAI Gym构建智能体的实战指南。全书先简要介绍智能体和学习环境的一些入门知识,概述强化学习和深度强化学习的基本概念和知识点,然后重点介绍OpenAI Gym的相关内容,随后在具体的Gym环境中运用强化学习算法构建智能体。本书还探讨了这些算法在游戏、自动驾驶领域的应用。 本书适合想用OpenAI Gym构建智能体的读者阅读,也适合对强化学习和深度强化学习感兴趣的读者参考。读者应具备一定的Python编程基础。 作者简介 普拉文·巴拉尼沙米,专注于研究自主智能系统。他是通用汽车研发部门的AI(人工智能)研究员,主要负责针对自动驾驶开发基于深度强化学习的规划和决策算法。在此之前,他在卡内基-梅隆大学机器人所从事自动导航的研究(包括可移动机器人的感知与智能),曾从零开始研发一个完整的、自动的机器人系统。 目录 第1章 智能体与学习环境入门 1.1 智能体简介 1.2 学习环境 1.3 OpenAI Gym简介 1.4 理解OpenAI Gym的主要特性 1.4.1 简单的环境接口 1.4.2 可比较与可复现 1.4.3 进程可监控 1.5 OpenAI Gym工具包的作用 1.6 创建第一个OpenAI Gym环境 1.7 小结 第2章 强化学习和深度强化学习 2.1 强化学习简介 2.2 直观理解人工智能的含义和内容 2.2.1 监督学习 2.2.2 非监督学习 2.2.3 强化学习 2.3 强化学习实战 2.3.1 智能体 2.3.2 奖励 2.3.3 环境 2.3.4 状态 2.3.5 模型 2.3.6 值函数 2.3.7 策略 2.4 马尔可夫决策过程 2.5 动态规划 2.6 蒙特卡洛学习和时序差分学习 2.7 SARSA和Q-Learning 2.8 深度强化学习 2.9 强化学习和深度强化学习算法的实践应用 2.10 小结 第3章 开启OpenAI Gym和深度强化学习之旅 3.1 代码库、设置和配置 3.1.1 先决条件 3.1.2 创建conda环境 3.1.3 最小化安装——快捷简便的方法 3.1.4 完整安装OpenAI Gym学习环境 3.2 安装深度强化学习所需的工具和库 3.2.1 安装必备的系统软件包 3.2.2 安装CUDA 3.2.3 安装PyTorch 3.3 小结 第4章 探索Gym及其功能 4.1 探索环境列表和术语 4.1.1 术语 4.1.2 探索Gym环境 4.2 理解Gym接口 4.3 Gym中的空间 4.4 小结 第5章 实现第一个智能体—解决过山车问题 5.1 了解过山车问题 5.2 从零开始实现Q-Learning智能体 5.2.1 Q-Learning回顾 5.2.2 使用Python和NumPy实现Q-Learning智能体 5.3 在Gym中训练强化学习智能体 5.4 测试并记录智能体的性能 5.5 一个简单且完整的Q-Learner实现——过山车问题的解决方案 5.6 小结 第6章 用深度Q-Learning实现最优化控制智能体 6.1 优化Q-Learning智能体 6.1.1 用神经网络近似Q函数 6.1.2 经验回放 6.1.3 重温ε-贪婪动作策略 6.2 实现一个深度Q-Learning智能体 6.2.1 用PyTorch实现一个深度卷积Q网络 6.2.2 使用目标Q网络稳定智能体的学习 6.2.3 记录和可视化智能体的学习过程 6.2.4 管理超参数和配置参数 6.2.5 用完整的深度Q-Learner处理输入为原始像素的复杂问题 6.3 Atari Gym环境 6.4 训练深度Q-Learner玩Atari游戏 6.4.1 整合一个完整的深度Q-Learner 6.4.2 超参数 6.4.3 启动训练过程 6.4.4 在Atari游戏中测试深度Q-Learner的性能 6.5 小结 第7章 创建自定义OpenAI Gym环境——CARLA 7.1 理解Gym环境结构 7.1.1 为自定义Gym环境实现创建模板 7.1.2 在OpenAI Gym环境中注册自定义环境 7.2 创建与OpenAI Gym兼容的CARLA环境 7.2.1 配置和初始化 7.2.2 实现reset方法 7.2.3 为CARLA环境实现step函数 7.2.4 测试CARLA Gym环境 7.3 小结 第8章 用深度演员-评论家算法实现无人驾驶智能体 8.1 深度n步优势演员-评论家算法 8.1.1 策略梯度 8.1.2 演员-评论家算法 8.1.3 优势演员-评论家算法 8.1.4 n步优势演员-评论家算法 8.1.5 深度n步优势演员-评论家算法 8.2 实现深度n步优势演员-评论家智能体 8.2.1 初始化演员和评论家网络 8.2.2 用当前策略获取n步经验 8.2.3 计算演员和评论家的损失 8.2.4 更新演员-评论家模型 8.2.5 用于保存/加载、记录、可视化和监视的工具 8.2.6 扩展——异步深度n步优势演员-评论家 8.3 训练一个“聪明”的自动驾驶智能体 8.3.1 训练和测试深度n步优势演员-评论家智能体 8.3.2 训练智能体在CARLA中驾驶车辆 8.4 小结 第9章 探索学习环境全景——Roboschool、Gym Retro、StarCraft-Ⅱ和DeepMind Lab 9.1 Gym接口兼容的环境 9.1.1 Roboschool 9.1.2 Gym Retro 9.2 其他基于Python的开源学习环境 9.2.1 星际争霸Ⅱ—PySC 9.2.2 DeepMind Lab 9.3 小结 第10章 探索学习算法世界——DDPG(演员-评论家)、PPO(策略梯度)、Rainbow(基于值) 10.1 深度确定性策略梯度 10.2 近端策略优化 10.3 Rainbow 10.3.1 核心概念 10.3.2 优点及应用简要总结 10.4 小结 |
随便看 |
|
霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。