网站首页  软件下载  游戏下载  翻译软件  电子书下载  电影下载  电视剧下载  教程攻略

请输入您要查询的图书:

 

书名 PyTorch深度学习指南(计算机视觉全彩印刷)
分类
作者 (巴西)丹尼尔·沃格特·戈多伊
出版社 机械工业出版社
下载
简介
内容推荐
“PyTorch深度学习指南”丛书循序渐进地详细讲解了与深度学习相关的重要概念、算法和模型,并着重展示了PyTorch是如何实现这些算法和模型的。其共分三卷:编程基础、计算机视觉、序列与自然语言处理。
本书为该套丛书的第二卷:计算机视觉。本书主要介绍了深度模型、激活函数和特征空间;Torchvision、数据集、模型和转换;卷积神经网络、丢弃和学习率调度器;迁移学习和微调流行的模型(ResNet、Inception等)等内容。
本书适用于对深度学习感兴趣,并希望使用PyTorch实现深度学习的Python程序员阅读学习。
作者简介
赵春江,博士,毕业于上海交通大学。在信息处理领域有着十余年丰富的教学和科研经验。在科研方面,主持过3项省级教科研项目,在国内外期刊和会议中共发表20余篇学术论文,其中被SCl或EI检索共计12篇。
目录
前言
致谢
关于作者
译者序
常见问题
为什么选择PyTorch?
为什么选择这套书?
谁应该读这套书?
我需要知道什么?
如何阅读这套书?
下一步是什么?
设置指南
官方资料库
环境
谷歌Colab
Binder
本地安装
继续
第4章 图像分类
剧透
Jupyter Notebook
导入
图像分类
数据生成
NCHW与NHWC
Torchvision
数据集
模型
转换
图像上的转换
张量上的转换
组合转换
数据准备
数据集转换
SubsetRandomSampler
数据增强转换
WeightedRandomSampler
种子和更多(种子)
小结
作为特征的像素
浅层模型
符号
模型配置
模型训练
深层模型
模型配置
模型训练
给我看看数学
给我看看代码
作为像素的权重
激活函数
Sigmoid
双曲正切(TanH)
整流线性单元(ReLU)
泄漏ReLU
参数ReLU(PReLU)
深度模型
模型配置
模型训练
再给我看看数学
归纳总结
回顾
奖励章 特征空间
二维特征空间
转换
二维模型
决策边界,激活方式
更多的函数,更多的边界
更多的层,更多的边界
更多的维度,更多的边界
回顾
第5章 卷积
剧透
Jupyter Notebook
导入
卷积
滤波器/内核
卷积运算
四处移动
形状
在PyTorch中进行卷积
步幅
填充
真正的滤波器
池化
展平
维度
典型架构
LeNet-5
多类分类问题
数据生成
数据准备
损失
分类损失总结
模型配置
模型训练
可视化滤波器和其他
可视化滤波器
钩子
可视化特征图
可视化分类器层
准确率
加载器应用
归纳总结
回顾
第6章 石头、剪刀、布
剧透
Jupyter Notebook
导入
关于石头、剪刀、布
石头、剪刀、布数据集
数据准备
ImageFolder
标准化
真实数据集
三通道卷积
更高级的模型
丢弃
二维丢弃
模型配置
优化器
学习率
模型训练
准确率
正则化效果
可视化滤波器
学习率
寻找LR
自适应学习率
随机梯度下降(SGD)
学习率调度器
验证损失调度器
自适应与循环
归纳总结
回顾
第7章 迁移学习
剧透
Jupyter Notebook
导入
迁移学习
ImageNet
ImageNet大规模视觉识别挑战赛(ILSVRC)
ILSVRC-2012
ILSVRC-2014
ILSVRC-2015
对比各架构
实践中的迁移学习
预训练模型
模型配置
数据准备
模型训练
生成特征数据集
顶层模型
辅助分类器(侧头)
1×1卷积
Inception模块
批量归一化
游程(running)统计
评估阶段
动量
BatchNorm2d
其他归一化
小结
残差连接
学习恒等
捷径的力量
残差块
归纳总结
微调
特征提取
回顾
额外章 梯度消失和爆炸
剧透
Jupyter Notebook
导入
梯度消失和爆炸
梯度消失
球数据集和块模型
权重、激活和梯度
初始化方案
批量归一化
梯度爆炸
数据生成和准备
模型配置和训练
梯度裁剪
模型配置和训练
用钩子裁剪
回顾
随便看

 

霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。

 

Copyright © 2002-2024 101bt.net All Rights Reserved
更新时间:2025/2/22 21:04:00