网站首页 软件下载 游戏下载 翻译软件 电子书下载 电影下载 电视剧下载 教程攻略
书名 | 现代几何学--方法和应用(第2卷流形上的几何与拓扑英文版)(精)/俄罗斯数学经典 |
分类 | 科学技术-自然科学-数学 |
作者 | (俄罗斯)鲍里斯·杜布罗文//阿纳托利·福缅科//谢尔盖·诺维科夫 |
出版社 | 世界图书出版公司 |
下载 | |
简介 | 内容推荐 本书是莫斯科大学数学力学系经典教材《现代几何学——方法和应用》三卷本的第2卷。全书力求以直观的和物理的视角阐述,是一本难得的现代几何方面的佳作。本书可用作数学和理论物理专业高年级和研究生的教学用书,对从事几何和拓扑研究的工作者也极具参考价值。 目录 CHAPTER 1 Examples of Manifolds §1.The concept of a manifold 1.1.Definition of a manifold 1.2.Mappings of manifolds; tensors on manifolds 1.3.Embeddings and immersions of manifolds.Manifolds with boundary §2.The simplest examples of manifolds 2.1.Surfaces in Euclidean space.Transformation groups as manifolds 2.2.Projective spaces 2.3.Exercises §3.Essential facts from the theory of Lie groups 3.1.The structure of a neighbourhood of the identity of a Lie group. The Lie algebra of a Lie group.Semisimplicity 3.2.The concept of a linear representation.An example of a non-matrix Lie group §4.Complex manifolds 4.1.Definitions and examples 4.2.Riemann surfaces as manifolds §5.The simplest homogeneous spaces 5.1.Action of a group on a manifold 5.2.Examples of homogeneous spaces 5.3.Exercises §6.Spaces of constant curvature (symmetric spaces) 6.1.The concept of a symmetric space 6.2.The isometry group of a manifold.Properties of its Lie algebra 6.3.Symmetric spaces of the first and second types 6.4.Lie groups as symmetric spaces 6.5.Constructing symmetric spaces.Examples 6.6.Exercises §7.Vector bundles on a manifold 7.1.Constructions involving tangent vectors. 7.2.The normal vector bundle on a submanifold CHAPTER 2 Foundational Questions.Essential Facts Concerning Functions on a Manifold.Typical Smooth Mappings §8.Partitions of unity and their applications 8.1.Partitions of unity 8.2.The simplest applications of partitions of unity.Integrals over a manifold and the general Stokes formula 8.3.Invariant metrics §9.The realization of compact manifolds as surfaces in RN §10.Various properties of smooth maps of manifolds 10.1.Approximation of continuous mappings by smooth ones 10.2.Sard's theorem 10.3.Transversal regularity 10.4.Morse functions §11.Applications of Sard's theorem 11.1.The existence of embeddings and immersions 11.2.The construction of Morse functions as height functions 11.3.Focal points CHAPTER 3 The Degree of a Mapping.The Intersection Index of Submanifolds. Applications §12.The concept of homotopy 12.1.Definition of homotopy.Approximation of continuous maps and homotopies by smooth ones 12.2.Relative homotopies §13.The degree of a map 13.1.Definition of degree 13.2.Generalizations of the concept of degree 13.3.Classification of homotopy classes of maps from an arbitrary manifold to a sphere 13.4.The simplest examples §14.Applications of the degree of a mapping. 14.1.The relationship between degree and integral 14.2.The degree of a vector field on a hypersurface 14.3.The Whitney number.The Gauss-Bonnet formula 14.4.The index of a singular point of a vector field 14.5.Transverse surfaces of a vector field.The Poincaré-Bendixson theorem §15.The intersection index and applications 15.1.Definition of the intersection index 15.2.The total index of a vector field 15.3.The signed number of fixed points of a self-map (the Lefschetz,number).The Brouwer fixed-point theorem 15.4.The linking coefficient CHAPTER 4 Orientability of Manifolds.The Fundamental Group. Covering Spaces (Fibre Bundles with Discrete Fibre) §16.Orientability and homotopies of closed paths 16.1.Transporting an orientation along a path 16.2.Examples of non-orientable manifolds §17.The fundamental group 17.1.Definition of the fundamental group 17.2.The dependence on the base point 17.3.Free homotopy classes of maps of the circle 17.4.Homotopic equivalence 17.5.Examples 17.6.The fundamental group and orientability §18.Covering maps and covering homotopies 18.1.The definition and basic properties of covering spaces 18.2.The simplest examples.The universal covering 18.3.Branched |
随便看 |
|
霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。