内容推荐 高炉自动化是国际公认的挑战性难题。本书从数据驱动角度系统性总结和阐述作者及其团队近10年在高炉自动化方面的系列研究成果,主要包括数据驱动建模、控制与监测三部分内容。数据驱动建模部分主要针对难建模高炉炼铁过程数据质量不理想和非线性动态时变等问题,重点介绍鲁棒随机权神经网络、鲁棒支持向量回归机以及递推子空间辨识等建模方法;数据驱动控制部分主要介绍面向高炉铁水质量高性能控制的数据驱动预测控制、即时学习自适应预测控制以及无模型自适应(预测)控制等方法,前两类方法为间接数据驱动控制方法,而后者为直接数据驱动控制方法;数据驱动监测部分主要阐述面向高炉优质、低耗与稳定运行的数据驱动监测方法,包括PCA-ICA集成方法、KPLS鲁棒重构误差方法、自适应阈值KPLS方法以及改进贡献率KPLS方法。 本书可作为高等院校控制、冶金、计算机、人工智能等学科研究生和高年级本科生的参考书,也可供自动化、数据科学及冶金领域相关研究人员和工程技术人员参考。 目录 前言 第1章 绪论 1.1 引言 1.2 高炉炼铁过程及建模、控制与监测相关问题描述 1.2.1 高炉炼铁过程描述 1.2.2 高炉铁水质量指标 1.2.3 高炉铁水质量相关变量分析 1.2.4 高炉炼铁生产的基本操作制度 1.2.5 高炉炼铁过程动态特性及复杂性分析 1.3 高炉炼铁过程建模、控制与监测方法 1.3.1 高炉炼铁过程建模方法 1.3.2 高炉炼铁过程质量相关监测方法 1.3.3 高炉炼铁过程控制方法 1.4 本书主要内容 参考文献 第2章 基于随机权神经网络的高炉铁水质量建模 2.1 随机权神经网络理论基础 2.1.1 随机权神经网络算法简介 2.1.2 随机权神经网络算法实现要点 2.2 集成自编码器与PCA的高炉铁水质量RVFLNs建模 2.2.1 自编码器简介 2.2.2 集成自编码器与PCA的RVFLNs算法 2.2.3 工业数据验证 2.3 高炉铁水质量鲁棒正则化RVFLNs建模 2.3.1 正则化与鲁棒估计简介 2.3.2 鲁棒正则化RVFLNs算法 2.3.3 工业数据验证 2.4 高炉铁水质量鲁棒OS-RVFLNs建模 2.4.1 建模策略 2.4.2 带有遗忘因子的在线序贯学习RVFLNs算法 2.4.3 鲁棒OS-RVFLNs算法 2.4.4 工业数据验证 2.5 基于GM-估计与PLS的铁水质量鲁棒RVFLNs建模 2.5.1 建模策略 2.5.2 PLS-RVFLNs算法 2.5.3 基于GM-估计与PLS的鲁棒RVFLNs算法 2.5.4 工业数据验证 参考文献 第3章 基于支持向量回归的高炉铁水质量鲁棒建模 3.1 支持向量回归理论基础 3.1.1 支持向量分类机 3.1.2 支持向量回归机 3.1.3 核函数 3.2 基于稀疏化鲁棒LSSVR的铁水硅含量建模 3.2.1 建模问题描述 3.2.2 稀疏化鲁棒LSSVR建模算法 3.2.3 R-S-LSSVR参数多目标遗传优化 3.2.4 工业数据验证 3.3 基于多输出鲁棒LSSVR的多元铁水质量建模 3.3.1 建模问题描述 3.3.2 多输出鲁棒LSSVR建模算法 3.3.3 多输出鲁棒LSSVR参数多目标遗传优化 3.3.4 工业数据验证 参考文献 第4章 基于子空间辨识的高炉铁水质量建模 4.1 子空间辨识算法理论基础 4.1.1 正交投影 4.1.2 斜向投影 4.1.3 QR分解 4.1.4 奇异值分解 4.2 基于线性子空间辨识的高炉铁水质量建模 4.2.1 系统状态空间描述 4.2.2 子空间辨识数据矩阵构造 4.2.3 线性子空间辨识算法 4.2.4 工业数据验证 4.3 基于递推子空间辨识的高炉铁水质量在线建模 4.3.1 递推子空间辨识算法 4.3.2 工业数据验证 4.4 基于递推双线性子空间辨识的高炉铁水质量在线建模 4.4.1 递推双线性子空间辨识算法 4.4.2 工业数据验证 4.5 基于非线性子空间辨识的高炉铁水质量建模 4.5.1 基于LSSVM的非线性子空间辨识算法 4.5.2 工业数据验证 参考文献 第5章 高炉炼铁过程其他数据驱动建模方法 5.1 高炉十字测温中心温度估计的M-ARMAX建模 5.1.1 高炉十字测温过程及建模问题描述 5.1.2 建模算法 5.1.3 工业数据验证 5.2 建模误差PDF形状优化的高炉十字测温中心温度估计 5.2.1 小波神经网络算法简介 5.2.2 建模策略与建模算法 5.2.3 工业数据验证 5.3 面向建模误差PDF形状与趋势拟合优度多目标优化的铁水 质量建模 5.3.1 建模策略 5.3.2 建模算法 5.3.3 数值仿真 5.3.4 工业数据验证 参考文献 第6章 高炉铁水质量数据驱动预测控制 6.1 预测控制及相关问题 6.2 基于单输出LSSVR建模的铁水硅含量非线性预测控制 6.2.1 控制算法 6.2.2 工业数据验证 6.3 基于多输出LSSVR逆系统辨识的铁水质量预测控制 6.3.1 控制算法 6.3.2 工业数据验证 6.4 基于线性子空间在线预测建模的铁水质量自适应预测控制 6.4.1 控制算法 6.4.2 工业数据验证 6.5 基于双线性子空间在线预测建模的铁水质量自适应预测控制 6.5.1 控制算法 6.5.2 工业数据验证 参考文献 第7章 基于即时学习的高炉铁水质量自适应预测控制 7.1 即时学习方法理论基础 7.1.1 即时学习基本原理 7.1.2 即时学习的几个主要问题 7.2 基于线性即时学习的铁水硅含量自适应预测控制 7.2.1 控制算法 7.2.2 工业数据验证 7.3 基于快速JITL-R-M-LSSVR的铁水质量自适应预测控制 7.3.1 快速JITL-R-M-LSSVR策略 7.3.2 快速JITL-R-M-LSSVR算法 7.3.3 基于快速JITL-R-M-LSSVR的非线性预测控制 7.3.4 工业数据验证 参考文献 第8章 高炉铁水质量无模型自适应控制 8.1 基本MFAC算法及其在高炉铁水质量控制的问题分析 8.1.1 基于紧格式动态线性化的铁水质量MFAC设计算法 8.1.2 基于偏格式动态线性化的铁水质 |