内容推荐 作为作者过往多年间从事生物气溶胶、颗粒与气态污染物在多种室内高人口密度环境内传播特性及暴露人员健康风险评估相关研究的结合与总结,本书通过独特的视角,从流体力学角度出发,遵循气溶胶类感染物的物理传播特性,辅以计算模拟预测,分析还原了传染性气溶胶从感染者体内释放,到最终被吸入后在他人呼吸道内传输沉积的完整过程。本书的另一特色在于通过将传染性气溶胶的生物特性参数与计算流体力学相结合,提供了一套可量化的健康感染风险评估体系。其成果在科技部国家重点基础研究发展计划(“973”计划)、国家自然科学基金等多个项目的资助下完成。 本书的研究内容属交叉学科,可供建筑环境、生物工程、生物化学、流行病学、公共卫生、病理学等专业的学生及研究人员参考。 目录 Chapter 1 Introduction 1.1 Emerging Respiratory Pandemics 1.2 Transmission Modes 1.3 From the Fluid Dynamics Perspective 1.3.1 Exhalation 1.3.2 Transport Characteristics in the Air 1.3.3 Exposure and Inhalability 1.3.4 Deposition in Human Respiratory System 1.4 Research Method 1.5 CFD Application to Transmission Control References Chapter 2 Bioaerosol Dynamics 2.1 What is Bioaerosol 2.2 Types of Bioaerosols 2.3 Properties of Bioaerosol 2.3.1 Size Distribution 2.3.2 Kinetic Properties 2.3.3 Biological Properties 2.4 Motion in the Air 2.5 Dynamic Size Distribution 2.5.1 Evaporation and Condensation 2.5.2 Influential Factors 2.6 Deposition Mechanism 2.7 Summary References Chapter 3 Respiratory-based Bioaerosol Infections 3.1 Bioaerosol in the Air 3.2 Bioaerosol Inhalation and Deposition in Human Respiratory System 3.2.1 The Human Respiratory System 3.2.2 Concept and Physical Basis of Inhalability 3.2.3 Definition and Physical Basis of Deposition 3.2.4 Local and Total Respiratory Tract Deposition 3.2.5 Biological Mechanisms of Clearance and Redistribution 3.3 Bioaerosol-related Infections 3.4 Chain Infection due to Bioaerosol Transmission 3.5 Bioaerosol Infection Control 3.6 Summary References Chapter 4 Computational Fluid Dynamics 4.1 Introduction 4.2 Principles of CFD and Equations 4.3 Turbulent Flow and Models 4.4 Bioaerosol Transport Models 4.4.1 Lagrangian Model 4.4.2 Eulerian Model 4.5 CFD Workftlow and Scheme 4.6 Current Status of CFD Software 4.7 Summary References Chapter 5 Effects of Occupant's Micro-environment on Bioaerosol Transport 5.1 Introduction 5.2 Metabolic Body Heat and Thermal Plume 5.2.1 Characteristic of the Thermal Plume for Sitting Posture 5.2.2 Interactions between Thermal Plume and Respiratory Flow 5.2.3 Plume Effect on the Contaminant Field 5.3 Computational Thermal Manikins 5.3.1 Four Simplification Approaches 5.3.2 Case Study of the CTM Simplification Approaches in an Enclosed Chamber 5.4 Quantifiable Simplification Approach for CTMs 5.4.1 Mesh Decimating Algorithm 5.4.2 Effect of MDA Simplification on Global Airfliow Field 5.4.3 Effect of MDA Simplification on Human Micro-environment 5.4.4 Case Study-Micro-environment of CTMs using Various Simplification Approaches 5.5 Thermal Airflow Field 5.5.1 Case Study-An Enclosed Chamber 5.5.2 Case Study-A Reduced-scale Cabin Environment 5.6 Summary References Chapter 6 Bioaerosol Transport in Occupied Environments 6.1 Introduction 6.2 Tracking Models of Bioaerosol Transport 6.2.1 The Lagrangian Approach 6.2.2 The Eulerian Approach 6.2.3 Bioaerosol Concentration and Distribution Transport 6.2.4 Case Study-Bioaerosol Transport in a Small Chamber 6.3 Impacts of Indoor Ventilation Scheme 6.3.1 Case Study-Comparison of the Displacement and Mixing Ventilation in a Small Chamber 6.3.2 Case Study-Effect of the Ventilation Layouts in a Conference Room 6.4 Bioaerosol Transport in Densely Occupied Environment 6.4.1 Case Study-A Typical Cabin Environment 6.4.2 Case Study-A Public Transport Train Cabin 6.4.3 Case Study-A Large-scale Airliner Cabin Environment 6.5 Summary References Chapter 7 Influential Factors on Bioaerosol Transport 7.1 Introduction 7.2 Effect of Dynamic Droplets Size Distribution in Indoor Spaces 7.2.1 Droplets Size Distribution from Various Respiratory Behaviour 7.2.2 Droplets Size Reduction due to Evaporation 7.2.3 Case Study–Dynamic Size Reduction of Cough Released Bioaerosols and Droplets due to Evaporation 7.2.4 Case Study–Interactions between Human Thermal Plume and Cough Released Droplets 7.2.5 Delayed Droplets Deposition |