网站首页 软件下载 游戏下载 翻译软件 电子书下载 电影下载 电视剧下载 教程攻略 音乐专区
霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。
| 电子书 | 智慧地铁车站系统--数据科学与工程(英文版)(精) |
| 分类 | 电子书下载 |
| 作者 | 刘辉 |
| 出版社 | 中南大学出版社 |
| 下载 |
|
| 介绍 |
内容推荐 智慧地铁专注于铁路系统的新概念和新模式,是数据科学与工程的跨学科研究。智慧地铁是一个新兴的领域。本书介绍智慧地铁车站系统中数据科学和工程学的关键技术。本书可以为研究人员提供重要参考,并鼓励以后在智慧地铁、智能铁路、数据科学与工程、人工智能和其他相关领域进行后续研究。 目录 Chapter 1 Exordium
1.1 Overview of data science and engineering 1.2 Framework of smart metro station systems 1.3 Human and smart metro station systems 1.4 Environment and smart metro station systems 1.5 Energy and smart metro station systems 1.6 Scope of this book References Chapter 2 Metro traffic flow monitoring and passenger guidance 2.1 Introduction 2.2 Description of metro traffic flow data 2.3 Prediction of metro traffic flow based on Elman neural network 2.4 Prediction of metro traffic flow based on deep echo state network 2.5 Passenger guidance strategy based on prediction results 2.6 Conclusions References Chapter 3 Individual behavior analysis and trajectory prediction 3.1 Introduction 3.2 Description of individual GPS data 3.3 Preprocessing of individual GPS data 3.4 Prediction of GPS trajectory based on optimized extreme learning machine 3.5 Prediction of GPS trajectory based on optimized support vector machine 3.6 Analysis of individual behavior based on prediction results 3.7 Conclusions References Chapter 4 Clustering and anomaly detection of crowd hotspot regions 4.1 Introduction 4.2 Description of crowd GPS data 4.3 Preprocessing of crowd GPS data 4.4 Clustering of crowd hotspot regions based on K-means 4.5 Clustering of crowd hotspot regions based on DBSCAN 4.6 Anomaly detection of crowd hotspot regions based on Markov chain 4.7 Conclusions References Chapter 5 Monitoring and deterministic prediction of station humidity 5.1 Introduction 5.2 Description of station humidity data 5.3 Deterministic prediction of station humidity based on optimization ensemble 5.4 Deterministic prediction of station humidity based on stacking ensemble 5.5 Evaluation of deterministic prediction results 5.6 Conclusions References Chapter 6 Monitoring and probabilistic prediction of station temperature 6.1 Introduction 6.2 Description of station temperature data 6.3 Interval prediction of station temperature based on quantile regression 6.4 Interval prediction of station temperature based on kernel density estimation 6.5 Evaluation of probabilistic prediction results 6.6 Conclusions References Chapter 7 Monitoring and spatial prediction of multi-dimensional air pollutants 7.1 Introduction 7.2 Description of multi-dimensional air pollutants data 7.3 Dimensionality reduction of multi-dimensional air pollutants data 7.4 Spatial prediction of air pollutants based on Long Short-Term Memory 7.5 Evaluation of spatial prediction results 7.6 Conclusions References Chapter 8 Time series feature extraction and analysis of metro load 8.1 Introduction 8.2 Description of metro load data 8.3 Feature extraction of metro load based on statistical methods 8.4 Feature extraction of metro load based on transform methods 8.5 Feature extraction of metro load based on model 8.6 Conclusions References Chapter 9 Characteristic and correlation analysis of metro load 9.1 Introduction 9.2 The theoretical basis of correlation analysis 9.3 Description of metro load data 9.4 Correlation analysis of metro load and environment data 9.5 Correlation analysis of metro load and operation data 9.6 Comprehensive correlation ranking of metro load and related data 9.7 Conclusions References Chapter 10 Metro load prediction and intelligent ventilation control 10.1 Introduction 10.2 Description of short-term and long-term metro load data 10.3 Short-term prediction of metro load data based on ANFIS model 10.4 Long-term prediction of metro load data based on SARIMA model 10.5 Performance evaluation of prediction results 10.6 Intelligent ventilation control based on prediction results 10.7 Conclusions References |
| 截图 | |
| 随便看 |
|
免责声明
本网站所展示的内容均来源于互联网,本站自身不存储、不制作、不上传任何内容,仅对网络上已公开的信息进行整理与展示。
本站不对所转载内容的真实性、完整性和合法性负责,所有内容仅供学习与参考使用。
若您认为本站展示的内容可能存在侵权或违规情形,请您提供相关权属证明与联系方式,我们将在收到有效通知后第一时间予以删除或屏蔽。
本网站对因使用或依赖本站信息所造成的任何直接或间接损失概不承担责任。联系邮箱:101bt@pm.me