网站首页  软件下载  游戏下载  翻译软件  电子书下载  电影下载  电视剧下载  教程攻略

请输入您要查询的图书:

 

书名 人工智能安全/大数据与人工智能技术丛书
分类
作者
出版社 清华大学出版社
下载
简介
内容推荐
本书对人工智能安全的理论与实践技术进行了梳理,全面完整地覆盖了人工智能安全技术的主要方面,把相关知识体系划分为五部分,即人工智能的安全观、人工智能安全的数据处理、人工智能用于网络安全的攻击与防御、人工智能模型的对抗攻击与防御以及人工智能平台的安全与工具。第一部分对人工智能安全问题、基本属性、技术体系等进行了归纳梳理。第二部分介绍人工智能安全数据处理的三个主要方法,即非平衡数据分类、噪声数据处理和小样本学习方法。第三部分从人工智能技术赋能网络空间安全的攻击与防御问题角度出发,从三个典型实例及攻击图的角度介绍典型人工智能方法在攻击与防御中的应用。第四部分围绕机器学习模型的安全问题,对攻击者、对抗攻击的理论与方法、典型的对抗攻击方法、隐私安全、聚类模型的攻击以及对抗攻击的防御方法进行了梳理。第五部分介绍人工智能平台的安全与工具,以及基于阿里云天池AI学习平台的若干案例与实验。
本书可以作为高等院校网络空间安全、人工智能、大数据、计算机以及电子信息等相关专业研究生和高年级本科生的教材,也可以作为网络空间安全、人工智能安全、大数据、计算机等领域研究人员、专业技术人员和管理人员的参考书。
目录
第一部分 人工智能的安全观
第1章 人工智能安全概述
1.1 什么是人工智能安全
1.2 人工智能安全问题与脆弱性
1.2.1 人工智能及其安全问题的出现
1.2.2 人工智能安全的层次结构
1.2.3 人工智能的脆弱性
1.3 人工智能安全的基本属性
1.4 人工智能安全的技术体系
1.4.1 人工智能安全的数据处理
1.4.2 人工智能用于网络安全攻击与防御
1.4.3 人工智能对抗攻击与防御
1.4.4 机器学习隐私攻击与保护
1.4.5 人工智能安全治理技术
1.4.6 人工智能平台安全
1.5 人工智能安全的数学基础
1.6 人工智能安全的相关法律与规范
1.7 人工智能安全的发展趋势
第二部分 人工智能安全的数据处理
第2章 非平衡数据分类
2.1 数据非平衡现象与影响
2.2 非平衡数据分类方法
2.2.1 数据欠采样
2.2.2 数据过采样
2.2.3 数据组合采样
2.2.4 特征层的不平衡数据分类
2.2.5 算法层的非平衡数据分类
2.3 非平衡数据分类方法的实现
第3章 噪声数据处理
3.1 噪声的分类、产生原因与影响
3.2 噪声处理的理论与方法
3.3 基于数据清洗的噪声过滤
3.4 主动式噪声迭代过滤
3.5 噪声鲁棒模型
3.5.1 错误样本权重调整
3.5.2 损失函数设计
第4章 小样本学习方法
4.1 小样本学习基础
4.1.1 小样本学习的类型
4.1.2 小样本学习与其他机器学习的关系
4.1.3 小样本学习的PAC理论
4.1.4 小样本学习方法体系
4.2 小样本的数据增强方法
4.3 基于模型的小样本学习
4.3.1 多任务学习
4.3.2 嵌入学习
4.3.3 生成式模型
4.4 基于算法的小样本学习
4.5 小样本学习的相关资源
第三部分 人工智能用于网络安全的攻击与防御
第5章 基于机器学习的安全检测
5.1 网络入侵检测
5.1.1 概述
5.1.2 数据集
5.1.3 数据预处理
5.1.4 特征工程
5.1.5 在天池AI平台上的开发
5.1.6 入侵检测的棘手问题
5.2 SQL注入检测
5.2.1 概述
5.2.2 SQL注入方法
5.2.3 SQL注入的检测方法
5.2.4 SQL语句的特征提取
5.2.5 在天池AI平台上的开发
5.3 虚假新闻检测
5.3.1 概述
5.3.2 基于统计学习的检测
5.3.3 基于多任务学习的检测
5.3.4 有待人工智能解决的问题
第6章 攻击与防御的智能技术
6.1 概述
6.2 攻击图简介
6.2.1 攻击图的基本概念
6.2.2 攻击图生成方法
6.2.3 攻击图的计算任务
6.3 基于图论的方法
6.3.1 图的路径算法
6.3.2 图节点排序算法
6.4 基于贝叶斯网络的方法
6.5 基于马尔可夫理论的方法
6.5.1 马尔可夫链
6.5.2 马尔可夫决策过程
6.5.3 隐马尔可夫模型
6.5.4 部分可观测马尔可夫决策过程
6.6 基于博弈论的方法
6.7 攻击图智能技术的发展趋势
第四部分 人工智能模型的对抗攻击与防御
第7章 机器学习系统的攻击者
7.1 从垃圾邮件检测谈起
7.2 机器学习系统的漏洞
7.3 攻击者及其目的
7.4 知识及攻击者能力
7.4.1 知识
7.4.2 攻击者能力
7.5 攻击者的代价与收益
7.6 攻击行为与分类
7.6.1 攻击行为
7.6.2 攻击行为分类
第8章 对抗攻击的理论与方法
8.1 对抗样本与方法
8.1.1 对抗样本及其存在性
8.1.2 对抗样本生成方法概述
8.2 对抗样本生成方法
8.2.1 基于梯度的方法
8.2.2 基于优化的方法
8.2.3 ZOO对抗样本生成
8.2.4 决策树对抗样本生成
8.2.5 普适扰动对抗样本生成
8.2.6 基于生成对抗网络的生成方法
第9章 典型的对抗攻击方法
9.1 投毒攻击
9.1.1 投毒攻击场景
9.1.2 投毒攻击的原理
9.1.3 基于天池AI的SVM投毒实现
9.1.4 手写数字分类器的投毒
9.2 后门攻击
9.3 逃避攻击
9.3.1 逃避攻击场景
9.3.2 逃避攻击原理
9.3.3 手写数字识别的逃避攻击
9.4 迁移攻击
9.5 自然语言对抗样本生成
9.5.1 自然语言对抗攻击的场景
9.5.2 文本情感分类的逃避攻击
9.5.3 原文本的对抗样本生成
9.5.4 伪文本生成
9.6 口令对抗网络样本生成
9.6.1 PassGAN设计原理
9.6.2 PassGAN的应用
第10章 机器学习系统的隐私安全
10.1 概述
10.2 机器学习模型的隐私
10.3 隐私保护技术基础
10.3.1 隐私及其度
随便看

 

霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。

 

Copyright © 2002-2024 101bt.net All Rights Reserved
更新时间:2025/3/29 11:21:44