网站首页 软件下载 游戏下载 翻译软件 电子书下载 电影下载 电视剧下载 教程攻略
书名 | 线性代数导引 |
分类 | 科学技术-自然科学-数学 |
作者 | 金小庆//刘伟辉//刘璇//赵志 |
出版社 | 科学出版社 |
下载 | ![]() |
简介 | 内容推荐 近年来,随着能源环境问题日益凸显和轻量化设计制造的需求日益迫切,航空航天、轨道交通、节能汽车等高技术领域对原位铝基复合材料的需求潜力巨大,且对其综合性能的要求也越来越高。本书较系统、详细地介绍了原位铝基复合材料的体系设计、材料开发、制备技术、凝固组织、塑变加工及性能。全书共八章,主要内容包括:原位反应体系的设计与开发、电磁法合成原位铝基复合材料、高能超声法合成原位铝基复合材料、声磁耦合法合成原位铝基复合材料、原位铝基复合材料的凝固组织及界面结构、塑变加工对原位铝基复合材料组织的影响、原位铝基复合材料的力学性能、原位铝基复合材料的磨损性能。内容丰富、新颖,具有系统性和前瞻性,反映了作者团队二十余年来在原位铝基复合材料领域的科研成果。 目录 Chapter 1 Linear Systems and Matrices 1.1 Introduction to Linear Systems and Matrices 1.1.1 Linear equations and linear systems 1.1.2 Matrices 1.1.3 Elementary row operations 1.2 Gauss-Jordan Elimination 1.2.1 Reduced row-echelon form 1.2.2 Gauss-Jordan elimination 1.2.3 Homogeneous linear systems 1.3 Matrix Operations 1.3.1 Operations on matrices 1.3.2 Partition of matrices 1.3.3 Matrix product by columns and by rows 1.3.4 Matrix product of partitioned matrices 1.3.5 Matrix form of a linear system 1.3.6 Transpose and trace of a matrix 1.4 Rules of Matrix Operations and Inverses 1.4.1 Basic properties of matrix operations 1.4.2 Identity matrix and zero matrix 1.4.3 Inverse of a matrix 1.4.4 Powers of a matrix 1.5 Elementary Matrices and a Method for Finding A-1 1.5.1 Elementary matrices and their properties 1.5.2 Main theorem of invertibility 1.5.3 A method for finding A-1 1.6 Further Results on Systems and Invertibility 1.6.1 A basic theorem 1.6.2 Properties of invertible matrices 1.7 Some Special Matrices 1.7.1 Diagonal and triangular matrices 1.7.2 Symmetric matrix Exercises Chapter 2 Determinants 2.1 Determinant Function 2.1.1 Permutation, inversion, and elementary product 2.1.2 Definition of determinant function 2.2 Evaluation of Determinants 2.2.1 Elementary theorems 2.2.2 A method for evaluating determinants 2.3 Properties of Determinants 2.3.1 Basic properties 2.3.2 Determinant of a matrix product 2.3.3 Summary 2.4 Cofactor Expansions and Cramer’s Rule 2.4.1 Cofactors 2.4.2 Cofactor expansions 2.4.3 Adjoint of a matrix 2.4.4 Cramer’s rule Exercises Chapter 3 Euclidean Vector Spaces 3.1 Euclidean n-Space 3.1.1 n-vector space 3.1.2 Euclidean n-space 3.1.3 Norm, distance, angle, and orthogonality 3.1.4 Some remarks 3.2 Linear Transformations from Rn to Rm 3.2.1 Linear transformations from Rn to Rm 3.2.2 Some important linear transformations 3.2.3 Compositions of linear transformations 3.3 Properties of Transformations 3.3.1 Linearity conditions 3.3.2 Example 3.3.3 One-to-one transformations 3.3.4 Summary Exercises Chapter 4 General Vector Spaces 4.1 Real Vector Spaces 4.1.1 Vector space axioms 4.1.2 Some properties 4.2 Subspaces 4.2.1 Definition of subspace 4.2.2 Linear combinations 4.3 Linear Independence 4.3.1 Linear independence and linear dependence 4.3.2 Some theorems 4.4 Basis and Dimension 4.4.1 Basis for vector space 4.4.2 Coordinates 4.4.3 Dimension 4.4.4 Some fundamental theorems 4.4.5 Dimension theorem for subspaces 4.5 Row Space, Column Space, and Nullspace 4.5.1 Definition of row space, column space, and nullspace 4.5.2 Relation between solutions of Ax = 0 and Ax=b 4.5.3 Bases for three spaces 4.5.4 A procedure for finding a basis for span(S) 4.6 Rank and Nullity 4.6.1 Rank and nullity 4.6.2 Rank for matrix operations 4.6.3 Consistency theorems 4.6.4 Summary Exercises Chapter 5 Inner Product Spaces 5.1 Inner Products 5.1.1 General inner products 5.1.2 Examples 5.2 Angle and Orthogonality 5.2.1 Angle between two vectors and orthogonality 5.2.2 Properties of length, distance, and orthogonality 5.2.3 Complement 5.3 Orthogonal Bases and Gram-Schmidt Process 5.3.1 Orthogonal and orthonormal bases 5.3.2 Projection theorem 5.3.3 Gram-Schmidt process 5.3.4 QR-decomposition 5.4 Best Approximation and Least Squares 5.4.1 Orthogonal projections viewed as approximations 5.4.2 Least squares solutions of linear systems 5.4.3 Uniqueness of least squares solut |
随便看 |
|
霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。