本书是一部英文版的数学专著,中文书名可译为《特殊芬斯勒空间的探究》。
本书的作者为V.K.乔贝(V.K.Chaubey)博士,他是一名芬斯勒几何爱好者。本书由七章组成,每一章又由许多的文章组成。对等式的引用采用(C,A,E)的形式,其中C表示章的编号,A表示文章的编号,E表示文章中方程的编号。
网站首页 软件下载 游戏下载 翻译软件 电子书下载 电影下载 电视剧下载 教程攻略
书名 | 特殊芬斯勒空间的探究(英文)/国外优秀数学著作原版系列 |
分类 | 科学技术-自然科学-数学 |
作者 | (印)V.K.乔贝 |
出版社 | 哈尔滨工业大学出版社 |
下载 | ![]() |
简介 | 内容推荐 本书是一部英文版的数学专著,中文书名可译为《特殊芬斯勒空间的探究》。 本书的作者为V.K.乔贝(V.K.Chaubey)博士,他是一名芬斯勒几何爱好者。本书由七章组成,每一章又由许多的文章组成。对等式的引用采用(C,A,E)的形式,其中C表示章的编号,A表示文章的编号,E表示文章中方程的编号。 目录 1 Introduction 1.1 Historical development from Geometry to Finsler Geometry 1.1.1 Origin of Geometry 1.1.2 Euclidean and Riemannian geometryFinsler Geometry 1.2 Differentiable Manifolds 1.2.1 n-dimensional Topological manifold 1.3 Curve and Line Element 1.4 Finsler Space 1.5 Physical motivation 1.6 .Tangent Space, Indicatrix and Minkowskian Space 1.6.1 Tangent Space 1.6.2 Indicatrix 1.6.3 Minkowskian Space 1.7 Finsler connections 1.7.1 Cartan's Connection 1.7.2 Rund's Connection 1.7.3 Berwald's connection 1.7.4 Hashiguchi's connection 1.8 Special Finsler Spaces 1.8.1 Definitions of some special Finsler spaces 1.8.2 Finsler space with (a, β)-metric 1.8.3 Finsler space with (Y, β)-metric 1.9 Intrinsic fields of orthonormal frames 1.9.1 Two-dimensional Finsler space 1.9.2 Three-dimensional Finsler space 1.9.3 Four-dimensional Finsler space 2 Generalized C"-Reducible Finsler Space 2.1 Introduction 2.2 Basic concept of generalized Cv-Reducible Finsler Space offirst kind 2.3 Generalized C”-Reducible Finsler Space of type Ⅰ 2.4 Generalized C"-Reducible Finsler Space of type Ⅱ 2.5 Basic concept of generalized Cv-Reducible Finsler Space ofsecond kind 2.6 Generalized Cv-Reducible Finsler Space of type Ⅲ 2.7 Generalized Cv-Reducible Finsler Space of type Ⅳ 3 On Finsler space with generalized (a, β)-Metric 3.1 Introduction 3.2 Preliminaries 3.3 Berwald frame for Two-dimensional generalized (a, B)-Metric 3.4 Main scalar of Two-dimensional generalized (a, B)-metric 3.5 Landsberg and Berwald spaces with generalized (a, B)-Metric 3.6 Landsberg and Berwald spaces with m-generalized Kropina metric 4 On Finsler spaces with unified main scalar (LC) is of theform L2C2 =f(y)+g(x) 4.1 Introduction 4.2 The condition L2C2 = f(y) + g(x) 4.3 Landsberg and Berwald spaces satisfying the condition L2C2 –f(y)+g(x) 5 On Finsler space with h-Randers conformal change 5.1 Introduction 5.2 Cartan's connection of Fn 5.3 Some properties of h-Randers conformal change 5.4 Geodesic Spray coefficients of Fn 5.5 C-reducibilty of Fn 5.6 Some Important tensors of Fn 6 Three-Dimensional Conformally flat Finsler Spaces 6.1 Introduction 6.2 Preliminaries 6.3 The scalar curvature R of the Finsler space (M,L) 7 On Finsler spaces with (Y,B)-Metric 7.1 Preliminaries 7.2 Introduction 7.3 Basic tensors of (y, B)-metric 7.4 Important tensors of (Y,B)-metric 7.5 Berwald Frame for Two-dimensional (Y, B) -Metric 7.6 Main Scalar of Two-dimensional (Y, B) -Metric 7.7 Geodesic of a Finsler space with (Y, B)-metric 7.8 Berwald connection for a Finsler space with (Y, B)-metric 7.9 Scalar curvature of a two-dimensional Finsler space with (Y, B) metric 7.10 Lagrange spaces with (Y, β)-metric 7.11 The fundamental tensor of a Lagrange space with (Y, B)-Metric 7.12 Eular-Lagrange equations in Lagrange spaces with (Y,B)-Metric 编辑手记 |
随便看 |
|
霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。