![]()
内容推荐 本书凝聚了作者在航天器姿态控制领域近十年的原创性研究成果,系统研究了多源复杂扰动下姿态稳定控制方法。全书共11章。第1章对线性矩阵不等式方法与航天器姿态动力学进行了介绍,为后续控制系统设计奠定理论基础;第2—6章介绍了刚体航天器姿态稳定控制方法,主要包括:状态反馈非脆弱控制、动态输出反馈非脆弱控制、基于中间状态观测器的容错时滞控制与容错非脆弱控制,以及基于干扰观测器的输入受限控制;第7—9章介绍了柔性航天器姿态稳定控制方法,主要包括:具有极点配置约束的改进混合H2/H∞控制、非脆弱H∞控制,以及基于主动振动抑制的抗干扰控制;第10章介绍了航天器混沌姿态同步跟踪控制方法,并在第11章给出了欠驱动混沌姿态角速度稳定控制方法供读者参考。 本书可供航空航天、机械电子及控制相关专业的高等院校本科生和研究生学习参考,也是相关领域科研工作者和工程技术人员查阅或教学的有效工具。 目录 Contents Preface 1. Introduction of basic knowledge 1.1 Linear matrix inequalities 1.1.1 What are linear matrix inequalities? 1.1.2 Useful lemmas for linear matrix inequalities 1.1.3 Advantages of linear matrix inequalities 1.1.4 Some standard linear matrix inequalitie problems 1.2 Spacecraft attitude kinematics and dynamics 1.2.1 Attitude representations 1.2.2 Attitude kinematics 1.2.3 Attitude dynamics References 2. State feedback nonfragile control 2.1 Introduction 2.2 Problem formulation 2.2.1 Attitude dynamics modeling 2.2.2 Control objective 2.3 State feedback nonfragile control law 2.3.1 Some lemmas 2.3.2 Sufficient conditions under additive perturbation 2.3.3 Sufficient conditions under multiplicative perturbation 2.4 Simulation test 2.4.1 Simulation results under additive perturbation 2.4.2 Simulation results under multiplicative perturbation 2.4.3 Simulation results using a mixed H2/HN controller 2.5 Conclusions References 3. Dynamic output feedback nonfragile control 3.1 Introduction 3.2 Problem formulation 3.2.1 Attitude system description 3.2.2 Nonfragile control problem 3.2.3 Control objective 3.3 Dynamic output feedback nonfragile control law design 3.3.1 Some lemmas 3.3.2 Controller design under additive perturbation 3.3.3 Controller design under multiplicative perturbation 3.3.4 Controller design under coexisting additive and multiplicative perturbations 3.4 Simulation test 3.4.1 Simulation results under additive perturbation 3.4.2 Simulation results under multiplicative perturbation 3.4.3 Simulation results under coexisting additive and multiplicative perturbations 3.5 Conclusions References 4. Observer-based fault tolerant delayed control 4.1 Introduction 4.2 Problem formulation 4.2.1 Attitude system description 4.2.2 Control objective 4.3 Observer-based fault tolerant control scheme 4.3.1 Intermediate observer design 4.3.2 Delayed controller design 4.3.3 Control solution 4.4 Simulation test 4.4.1 Simulation results using the proposed controller 4.4.2 Simulation results using the prediction-based sampled-dataHN controller 4.4.3 Comparison analysis using different controllers 4.5 Conclusions References 5. Observer-based fault tolerant nonfragile control 5.1 Introduction 5.2 Problem formulation 5.2.1 Attitude system description 5.2.2 Stochastically intermediate observer design 5.2.3 Nonfragile controller design 5.2.4 Control objective 5.3 Feasible solution for both cases 5.3.1 Some lemmas 5.3.2 Sufficient conditions under additive perturbation 5.3.3 Sufficient conditions under multiplicative perturbation 5.4 Simulation test 5.4.1 Comparison analysis under additive perturbation 5.4.2 Comparison analysis under multiplicative perturbation 5.5 Conclusions References 6. Disturbance observer-based controlwith input MRCs 6.1 Introduction 6.2 Problem formulation 6.2.1 Attitude system description 6.2.2 Control objective 6.3 Controller design and analysis 6.3.1 Some lemmas 6.3.2 Coexisting conditions for observer and controller gains 6.3.3 Proof and analysis 6.4 Simulation test 6.4.1 Nonzero angular rates 6.4.2 Zero angular rates 6.4.3 Evaluation indices for the three conditions 6.4.4 Parametric influence on control performance 6.5 Conclusions References 7. Improved mixed H2/HN control with poles assignment constraint 7.1 Introduction 7.2 Problem formulation 7.2.1 Flexible spacecraft dynamics with two bending modes 7.2.2 HN and H2 performance constraint 7.2.3 Poles assignment 7.2.4 Control objective 7.3 Improved mixed H2/HN control law 7.3.1 Some |