分形和现代分析引论/现代数学基础豆瓣PDF电子书bt网盘迅雷下载电子书下载-霍普软件下载网

网站首页   软件下载   游戏下载   翻译软件   电子书下载   电影下载   电视剧下载   教程攻略   音乐专区

请输入您要查询的图书:

霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。

电子书 分形和现代分析引论/现代数学基础
分类 电子书下载
作者 马力
出版社 高等教育出版社
下载 暂无下载
介绍
内容推荐
本书主要介绍了一些比较现代的分析数学的重要概念和定理以及分形的相关知识,内容包括:Cantor集及其数字系统描述、距离空间和不动点定理、迭代函数系统、简明的测度论、Hausdorff测度、分形的维数、Vitali覆盖引理和位势、有界变差函数和可求长度曲线、Brouwer定理等。本书的亮点之一是给出了一维的Rademacher定理的证明以及Brouwer不动点定理的简单证明。
本书可作为数学及相关专业高年级本科生和研究生学习分形理论和现代分析的教学参考资料,也可供科研工作者学习使用。
目录
1 引论
2 基础知识
2.1 几个基本概念
2.2 紧集
2.3 函数的连续性
2.4 连通性
2.5 平面上的Peano曲线
2.6 凸函数
2.7 Lebesgue引理
3 Cantor集C
4 Cantor集的数字系统描述
4.1 数字系统
4.2 Cantor-Lebesgue函数
5 距离空间和不动点定理
5.1 Newton迭代法
5.2 欧氏空间中的压缩映射定理
5.3 距离空间上的压缩映射
6 迭代函数系统IFS
6.1 作为不动点的分形
6.2 Hausdorff距离和不变集
6.3 自相似和相似的分形例子
6.4 相似变换迭代函数系统
7 简明测度论
7.1 测度的概念
7.2 可测函数和可积函数
7.3 Lebesgue测度
8 Brunn-Minkowski不等式和等周不等式
8.1 Brunn-Minkowski不等式
8.2 等周不等式
9 Hausdorff测度
Hausdorff测度的定义
10 Hn=Ln:n维Hausdorff测度就是n维Lebesgue测度
10.1 Hn=Ln
10.2 等直径不等式
11 分形的维数
11.1 Hausdorff维数
11.2 H?lder-y映射
11.3 Cantor集C的Hausdorff测度
12 盒子维数、拓扑维数和Sierpinski三角形
12.1 盒子维数
12.2 拓扑维数
12.3 Sierpinski三角形
13 Vitali覆盖引理和位势
13.1 Vitali覆盖引理
13.2 Newton位势
13.3 质量分布和位势
14 有界变差函数
14.1 有界变差函数和可求长度曲线
14.2 Lebesgue可微定理和Rademacher定理
14.3 可求长度曲线的长度
14.4 绝对连续函数
15 可求长度曲线和可求长度集合
15.1 可求长度曲线
15.2 高维的可求长度集合
15.3 高维有界变差函数
15.4 连续函数的稠密性
16 有界凸集合边界的测度
17 Brouwer定理
17.1 光滑函数行列式的零散度性质
17.2 零化Lagrange泛函
17.3 连续函数的光滑函数逼近
17.4 Brouwer不动点定理之简单证明
参考文献
名词索引(按章节)
截图
随便看

免责声明
本网站所展示的内容均来源于互联网,本站自身不存储、不制作、不上传任何内容,仅对网络上已公开的信息进行整理与展示。
本站不对所转载内容的真实性、完整性和合法性负责,所有内容仅供学习与参考使用。
若您认为本站展示的内容可能存在侵权或违规情形,请您提供相关权属证明与联系方式,我们将在收到有效通知后第一时间予以删除或屏蔽。
本网站对因使用或依赖本站信息所造成的任何直接或间接损失概不承担责任。联系邮箱:101bt@pm.me