![]()
内容推荐 本书针对金属增材制造加工过程进行系统研究,基于计算流体动力学方法研究金属增材制造工艺过程中的流体问题。第1章为绪论。第2~4章研究金属增材制造打印机腔体内部流场及颗粒分布特性,并设计新颖的流体罩和负压管分别对打印机腔体内部流场进行优化及溅射颗粒清除。第5~9章主要研究金属增材制造加工过程中熔池特性,其中,第5章研究金属熔池动力学特性,第6章研究外加磁场对金属增材制造过程中熔池及凝固过程的影响,第7章和第8章研究金属增材制造过程中工件内部单气孔缺陷和多气孔缺陷的演化过程。第9章研究金属增材制造工件激光清洗工艺,以控制工件表面粗糙度。 本书内容系统全面,新颖独特,面向从事增材制造和激光加工等相关领域的科研人员,以及关注先进制造、智能制造的专家学者和普通读者。 目录 Chapter 1 Introduction 1.1 Background 1.2 Motivation 1.3 Outline Chapter 2 Investigation of the flow field in Laser-based Powder Bed Fusion manufacturing 2.1 Introduction 2.2 Simulation model of the L-PBF printer 2.2.1 Problem description 2.2.2 Geometric model of the L-PBF printer 2.2.3 Numerical model of the L-PBF printer 2.3 Simulation results 2.3.1 Distribution of the flow field 2.3.2 Distribution of the temperature field 2.3.3 Distribution of spatter particles 2.4 Conclusions References Chapter 3 Investigation of optimizing the flow field with fluid cover in Laser-based Powder Bed Fusion manufacturing process 3.1 Introduction 3.2 Simulation model of L-PBF printer 3.2.1 Geometry of L-PBF printer with a fluid stabilizing cover 3.2.2 Numerical model of printer with a fluid stabilizing cover 3.2.3 Mesh of L-PBF printer with a fluid stabilizing cover 3.2.4 Model of the fluid stabilizing cover and particles 3.3 Simulation results and discussion 3.3.1 Influence of the fluid stabilizing cover on the flow field 3.3.2 Influence of fluid stabilizing cover on particle distribution and removing rate 3.4 Summary and conclusions References Chapter 4 Numerical investigation of controlling spatters with negative pressure pipe in Laser-based Powder Bed Fusion process 4.1 Introduction 4.2 Simulation model of L-PBF printer 4.2.1 Geometric model of L-PBF printer 4.2.2 Numerical model of L-PBF printer 4.3 Simulation results and discussions 4.3.1 Effect of pipe diameter 4.3.2 Effect of outlet flow rate 4.3.3 Effect of initial particle velocity 4.4 Summary and conclusions References Chapter 5 Evolution of molten pool during Laser-based Powder Bed Fusion of Ti-6Al-4V 5.1 Introduction 5.2 Modeling approach and numerical simulation 5.2.1 Model establishing and assumptions 5.2.2 Governing equations 5.2.3 Heat source model 5.2.4 Phase change 5.2.5 Boundary conditions setup 5.2.6 Mesh generation 5.3 Experimental procedures 5.4 Results and discussions 5.4.1 Surface temperature distribution and morphology 5.4.2 Formation and solidification of the molten pool 5.4.3 Development of the evaporation region 5.5 Conclusions References Chapter 6 Simulation of surface deformation control during Laser-based Powder Bed Fusion Al-Si-10Mg powder using an external magnetic field 6.1 Introduction 6.2 Modeling and simulation 6.2.1 Modeling of L-PBF 6.2.2 Mesh model and basic assumptions 6.2.3 Heat transfer conditions 6.2.4 Marangoni convection 6.2.5 Phase-change material 6.2.6 Lorentz force 6.3 Results 6.3.1 Velocity field in the molten pool 6.3.2 Lorentz force in the MP 6.3.3 Surface deformation of the sample 6.4 Conclusions References Chapter 7 Influence of laser post- processing on pore evolution of Ti-6Al-4V alloy by Laser-based Powder Bed Fusion 7.1 Introduction 7.2 Experimental procedures 7.2.1 Sample fabrication 7.2.2 Determination of porosity by micro-CT 7.3 Modeling and simulation 7.3.1 Numerical model 7.3.2 Moving Gaussian heat source 7.3.3 Thermal boundary conditions 7.3.4 Marangoni effect, surface tension and recoil pressure 7.4 Numerical results and discussion 7.5 Conclusions References Chapter 8 Evolution of multi pores in Ti-6Al-4V/Al-Si-10Mg alloy during laser post-processing 8.1 Introduction 8.2 Experimental procedures 8.2.1 Sample preparation 8.2.2 Detection of porosity by mirco-CT 8.3 Model and simulation 8.3.1 Simulation model 8.3.2 Gaussian heat source 8.3.3 Latent heat of phase change 8.3.4 Level-set method 8.3.5 Boundary conditions 8.4 Numerical results and discussion 8.5 Conclusions References |