简介 |
![]()
内容推荐 本书涵盖了微积分课程的相关知识,全书共分三章:第一章介绍了极限、连续性与致密性,包括数字系统与数学归纳法和基数的简单介绍,并给出了相关的概念和性质;第二章介绍了微分,主要讲述了可微性、高阶偏导数与泰勒定理;第三章介绍了一元与多元积分,给出了有限闭区间上实值函数积分、曲线、弧长和线积分的相关理论。本书需要读者对微积分有一定的了解,是为“有才华”的新生设计的有关分析学的基础教材。 目录 List of Figures Preface 1 Limits, Continuity, and Compactness 1.1 Number Systems and the Principle of Mathematical Induction 1.2 A Quick Introduction to Cardinal Numbers 1.3 Limits 1.4 Vector Space, Metric Space, Norms, and Inequalities 1.5 Continuous Functions, Open, Closed, and Compact Sets in I~n 2 Differentiation on Rn 2.1 Differentiability on Rn 2.2 Higher Partial Derivatives and Taylor's Theorem 2.3 Maxima and Minima for Real Valued Functions of Several Variables 2.4 The Implicit Function Theorem 3 One and Several Dimensional Integral Calculus 3.1 Brief Review of Integrals of Real-valued Functions Defined on a Finite Closed Interval in R 3.2 Curves, Arc Length, and Line Integrals 3.3 Higher Dimensional Integrals 3.4 Multiple Integrals and their Reduction to One Dimensional Integrals 3.5 Green's Theorem 3.6 Integration on Surfaces Authors' Biographies Index 编辑手记 |