内容推荐 作者写这本书的一个最重要的原因是想给读者一个系统的、综合的、完整的描述数字体系的理论,从而形成一个基础结构,在数学的各个分支中发挥中心作用。写这本书的目标是将一个数论和代数的入门本科课程发展为一个综合的学科。 这本书由10章组成,从集合论的元素开始(第1章),第2章是关于矩阵和行列式的,第3、4、5、6章涵盖了与线性代数相关的主要内容。我们在第3章中介绍了一些域论的元素,这些元素是描述线性代数所需要的一些基本元素(如矢量空间和双线性形式),不仅在数域上,而且在有限域上都是不可缺少的。第3章、第6章、第7章和第8章阐述了代数结构的主要思想。而第9章和第10章则展示了代数思想在数论中的应用(如9。4节)。第10章是对实数系统及其主要子系统的严格构造的发展,这一章是本书主要内容的一个重要附录,有无法忽略的重要价值。 目录 PREFACE CHAPTER 1 SETS 1.1 Operations on Sets l Exercise Set 1.1 1.2 Set Mappings Exercise Set 1.2 1.3 Products of Mappings Exercise Set 1.3 1.4 Some Properties of Integers Exercise Set 1.4 CHAPTER 2 MATRICES AND DETERMINANTS 2.1 Operations on Matrices Exercise Set 2.1 2.2 Permutations of Finite Sets Exercise Set 2.2 2.3 Determinants of Matrices Exercise Set 2.3 2.4 Computing Determinants Exercise Set 2.4 2.5 Properties of the Product of Matrices Exercise Set 2.5 CHAPTER 3 FIELDS 3.1 Binary Algebraic Operations Exercise Set 3.1 3.2 Basic Properties of Fields Exercise Set 3.2 3.3 The Field of Complex Numbers Exercise Set 3.3 CHAPTER 4 VECTOR SPACES 4.1 Vector Spaces Exercise Set 4.1 4.2 Dimension Exercise Set 4.2 4.3 The Rank of a Matrix Exercise Set 4.3 4.4 Quotient Spaces Exercise Set 4.4 CHAPTER 5 LINEAR MAPPINGS 5.1 Linear Mappings Exercise Set 5.1 5.2 Matrices of Linear Mappings Exercise Set 5.2 5.3 Systems of Linear Equations Exercise Set 5.3 5,4 Eigenvectors and Eigenvalues Exercise Set 5.4 CHAPTER 6 BILINEAR FORMS 6.1 Bilinear Forms Exercise Set 6.1 6.2 Classical Forms Exercise Set 6,2 6.3 Symmetric Forms over R Exercise Set 6,3 6.4 Euclidean Spaces Exercise Set 6.4 CHAPTER 7 RINGS 7.1 Rings, Subrings, and Examples Exercise Set 7.1 7.2 Equivalence Relations Exercise Set 7.2 7.3 Ideals and Quotient Rings Exercise Set 7.3 7.4 Homomorphisms of Rings Exercise Set 7.4 7.5 Rings of Polynomials and Formal Power Series Exercise Set 7.5 7.6 Rings of Multivariable Polynomials Exercise Set 7.6 CHAPTER 8 GROUPS 8.1 Groups and Subgroups Exercise Set 8.1 8.2 Examples of Groups and Subgroups Exercise Set 8.2 8.3 Cosets Exercise Set 8.3 8.4 Normal Subgroups and Factor Groups Exercise Set 8.4 8.5 Homomorphisms of Groups Exercise Set 8.5 CHAPTER 9 ARITHMETIC PROPERTIES OF RINGS 9.1 Extending Arithmetic to Commutative Rings Exercise Set 9.1 9.2 Euclidean Rings Exercise Set 9.2 9.3 Irreducible Polynomials Exercise Set 9.3 9.4 Arithmetic Functions Exercise Set 9.4 9.5 Congruences Exercise Set 9.5 CHAPTER 10 THE REAL NUMBER SYSTEM 10.1 The Natural Numbers 10.2 The Integers 10.3 The Rationals 10.4 The Real Numbers ANSWERS TO SELECTED EXERCISES INDEX 编辑手记 |