内容推荐 本书叙述深入浅出,以矩阵为主线,突出矩阵的运算和化简,突出用矩阵方法研究线性方程组、二次型和实际问题模型。本书对于抽象的理论和方法,总是从具体问题入手,再将其推广到一般情形,而略去了许多繁杂的理论推导,并力求将数学与应用相结合。 本书的主要内容包括线性方程组、矩阵代数、行列式、向量空间、矩阵的特征值与特征向量和二次型等。 本书是一本介绍性的线性代数教材,内容简洁,层次清晰,适合高等学校理工科专业线性代数课程双语教学使用。 作者简介 目录 Chapter 1 Linear Equations in Linear Algebra001 1.1Systems of Linear Equations001 1.2Row Reduction and Echelon Forms008 1.3Solutions of Linear Systems012 1.4Vector Equations014 Exercises017 Chapter 2 Matrix Algebra019 2.1Matrix Operations019 2.2The Inverse of a Matrix024 2.3Partitoned Matrices028 2.4Matrix Factorizations031 2.5Subspace of Rn032 2.6Dimension and Rank035 Exercises037 Chapter 3 Determinants040 3.1Introduction to Determinants040 3.2Properties of Determinants043 3.3Cofactor Expansion048 3.4The Inverse of a Matrix050 3.5Cramer’s Rule053 Exercises054 Chapter 4 Vector Spaces058 4.1Definition of Vector Spaces058 4.2Subspaces and Span062 4.3Linearly Independent Sets068 4.4Bases and Dimension071 4.5Inner Product,Length,Angle074 4.6Orthonormal Basis and the Gram-Schmidt Procedure078 Exercises084 Chapter 5 Eigenvalues and Eigenvectors088 5.1Definition of Eigenvalues and Eigenvectors088 5.2Properties of Eigenvalues and Eigenvectors092 5.3Similarity and Diagonalization096 5.4Diagonalization of Symmetric Matrices100 Exercises105 Chapter 6 Solution Sets of Linear Systems107 6.1Homogeneous Linear Systems107 6.2Solutions of Nonhomogeneous Systems108 6.3Applications of Linear Systems110 Exercises113 Chapter 7 Symmetric Matrices and Quadratic Forms117 7.1Diagonalization of Symmetric Matrices117 7.2Quadratic Forms119 7.3Quadratic Problems122 7.4The Singular Value Decomposition126 7.5Applications to Statistics129 Exercises132 References134 |