![]()
内容推荐 本教材是学习泛函分析课程的一本入门教材,是针对中国学生编写的一本英文教材,在选材上吸收了国外的很好本科生教材的一些精华;在编写上考虑了与中国学生所具备的基础知识衔接性,在充分地反映泛函分析中的核心内容的前提下,突出重点;在内容的处理上,体现了由浅入深,循序渐进的原则,用大量的例题对度量空间、赋范线性空间、线性算子与线性泛函、内积空间与各种算子及它们的谱分解的概念、关系、性质进行了演绎、推导与论证,书后的索引有中英文对照翻译,便于读者自学。本书配有200多道练习题(部分习题附有提示),为读者掌握泛函分析方法提供必要的训练。 目录 Preface Introduction List of Symbols Chapter 1 Metric Spaces 1.1 Preliminaries 1.2 Definitions and Examples 1.3 Convergence of Sequences in Metric Spaces 1.4 Sets in a Metric Space 1.5 Complete Metric Spaces 1.6 Continuous Mappings on Metric Spaces 1.7 Compact Metric Spaces 1.8 Banach Fixed Point Theorem Chapter 2 Normed Linear Spaces.Banach Spaces 2.1 Review of Linear Spaces 2.2 Norms in Linear Spaces 2.3 Examples of Normed Linear Spaces 2.4 Finite-Dimensional Normed Linear Spaces 2.5 Linear Subspaces of Normed Linear Spaces 2.6 Quotient Spaces 2.7 Weierstrass Approximation Theorem Chapter 3 Inner Product Spaces.Hilbert Spaces 3.1 Inner Products 3.2 Orthogonality 3.3 Orthonormal Systems 3.4 Fourier Series Chapter 4 Linear Operators.Fundamental Theorems 4.1 Bounded Linear Operators and Functionals 4.2 Spaces of Bounded Linear Operators and Dual Spaces 4.3 Banach-Steinhaus Theorem 4.4 Inverses of Operators. Banach's Theorem 4.5 Hahn-Banach Theorem 4.6 Strong and Weak Convergence Chapter 5 Linear Operators on Hilbert Spaces 5.1 Adjoint Operators. Lax-Milgram Theorem 5.2 Spectral Theorem for Self-adjoint Compact Operators Chapter 6 Differential Calculus in Normed Linear Spaces 6.1 Gateaux and Frechet Derivatives 6.2 Taylor's Formla, Implicit and Inverse Function Theorems Bibliography Index |