网站首页  软件下载  游戏下载  翻译软件  电子书下载  电影下载  电视剧下载  教程攻略

请输入您要查询的图书:

 

书名 实用机器学习
分类
作者 孙亮//黄倩
出版社 人民邮电出版社
下载
简介
作者简介
孙亮,阿里巴巴数据科学与技术研究院不错专家。曾任微软Azure机器学习(Azure Machine Learning)部门不错数据科学家,先后毕业于南京大学计算机系(1999-2003)、中国科学院软件研究所(2003-2006)、美国亚利桑那州立大学计算机系(2006-2011),研究兴趣包括机器学习、数据挖掘及其实际应用等。近年来参加了KDD Cup、Heritage Health Prize等多项数据挖掘竞赛并多次取得优异成绩。在IEEET-PAMI、NIPS、ICML、SIGKDD等机器学习领域的知名靠前期刊和靠前会议上发表论文近20篇,著有机器学习英文专著1部。
黄倩,河海大学副研究员,先后毕业于南京大学计算机系(1999-2003)、中国科学院计算技术研究所(2003-2010),研究兴趣包括多媒体大数据处理、机器学习、云计算等。参加过多个973、863、国家自然科学基金项目的研究,参与过AVS、H.265HEVC等靠前外视频压缩标准的制订。现主持包括国家自然科学基金在内的多个国家、省市级项目,并获南京市江宁区首批高层次创业人才“创聚工程”项目资助。在相关领域的知名靠前期刊和靠前会议上发表论文逾20篇,出版译著4本,参编专著1部。
目录
第1章引论
1.1什么是机器学习
1.2机器学习算法的分类
1.3实际应用
1.3.1病人住院时间预测
1.3.2信用分数估计
1.3.3Netflix上的影片推荐
1.3.4酒店推荐
1.3.5讨论
1.4本书概述
1.4.1本书结构
1.4.2阅读材料及其他资源
第2章R语言
2.1R的简单介绍
2.2R的初步体验
2.3基本语法
2.3.1语句
2.3.2函数
2.4常用数据结构
2.4.1向量
2.4.2因子
2.4.3矩阵
2.4.4数据框
2.4.5列表
2.4.6下标系统
2.5公式对象和apply函数
2.6R软件包
2.6.1软件包的安装
2.6.2软件包的使用
2.6.3软件包的开发
2.7网络资源
第3章数学基础
3.1概率
3.1.1基本概念
3.1.2基本公式
3.1.3常用分布
3.1.4随机向量及其分布
3.1.5随机变量的数字特征
3.1.6随机向量的数字特征
3.2统计
3.2.1常用数据特征
3.2.2参数估计
3.3矩阵
3.3.1基本概念
3.3.2基本运算
3.3.3特征值与特征向量
3.3.4矩阵分解
3.3.5主成分分析
3.3.6R中矩阵的计算
第4章数据探索和预处理
4.1数据类型
4.2数据探索
4.2.1常用统计量
4.2.2使用R实际探索数据
4.3数据预处理
4.3.1缺失值的处理
4.3.2数据的标准化
4.3.3删除已有变量
4.3.4数据的变换
4.3.5构建新的变量:哑变量
4.3.6离群数据的处理
4.4数据可视化
4.4.1直方图
4.4.2柱状图
4.4.3茎叶图
4.4.4箱线图
4.4.5散点图
第5章回归分析
5.1回归分析的基本思想
5.2线性回归和最小二乘法
5.2.1最小二乘法的几何解释
5.2.2线性回归和极大似然估计
5.3岭回归和Lasso
5.3.1岭回归
5.3.2Lasso与稀疏解
5.3.3ElasticNet
5.4回归算法的评价和选取
5.4.1均方差和均方根误差
5.4.2可决系数
5.4.3偏差-方差权衡
5.5案例分析
5.5.1数据导入和探索
5.5.2数据预处理
5.5.3将数据集分成训练集和测试集
5.5.4建立一个简单的线性回归模型
5.5.5建立岭回归和Lasso模型
5.5.6选取合适的模型
5.5.7构造新的变量
5.6小结
第6章分类算法
6.1分类的基本思想
6.2决策树
6.2.1基本原理
6.2.2决策树学习
6.2.3过拟合和剪枝
6.2.4实际使用
6.2.5讨论
6.3逻辑回归
6.3.1sigmoid函数的性质
6.3.2通过极大似然估计来估计参数
6.3.3牛顿法
6.3.4正则化项的引入
6.3.5实际使用
6.4支持向量机
6.4.1基本思想:最大化分类间隔
6.4.2最大分类间隔的数学表示
6.4.3如何处理线性不可分的数据
6.4.4Hinge损失函数
6.4.5对偶问题
6.4.6非线性支持向量机和核技巧
6.4.7实际使用
6.5损失函数和不同的分类算法
6.5.1损失函数
6.5.2正则化项
6.6交叉检验和caret包
6.6.1模型选择和交叉检验
6.6.2在R中实现交叉检验以及caret包
6.7分类算法的评价和比较
6.7.1准确率
6.7.2混淆矩阵
6.7.3精确率、召回率和F1度量
6.7.4ROC曲线和AUC
6.7.5R中评价标准的计算
6.8不平衡分类问题
6.8.1使用不同的算法评价标准
6.8.2样本权值
6.8.3取样方法
6.8.4代价敏感学习
第7章推荐算法
7.1推荐系统基础
7.1.1常用符号
7.1.2推荐算法的评价标准
7.2基于内容的推荐算法
7.3基于矩阵分解的算法
7.3.1无矩阵分解的基准方法
7.3.2基于奇异值分解的推荐算法
7.3.3基于SVD推荐算法的变体
7.4基于邻域的推荐算法
7.4.1基于用户的邻域推荐算法
7.4.2基于商品的邻域推荐算法
7.4.3混合算法
7.4.4相似度的计算
7.5R中recommenderlab的实际使用
7.6推荐算法的评价和选取
第8章排序学习
8.1排序学习简介
8.1.1解决排序问题的基本思路
8.1.2构造特征
8.1.3获取相关度分数
8.1.4数学符号
8.2排序算法的评价
8.2.1MAP
8.2.2DCG
8.2.3NDCG
8.2.4讨论
8.3逐点方法
8.3.1基于SVM的逐点排序方法
8.3.2逐点方法讨论
8.4逐对方法
8.4.1RankingSVM算法
8.4.2IR-SVM算法
8.4.3RankNet算法
8.4.4LambdaRank算法
8.4.5LambdaMART算法
8.5逐列方法
8.5.1SVMmap算法
8.5.2讨论
第9章集成学习
9.1集成学习简介
9.2bagging简介
9.3随机森林
9.3.1训练随机森林的基本流程
9.3.2利用随机森林估计变量的重要性
9.3.3随机森林的实际使用
9.4boosting简介
9.4.1boosting和指数损失函数
9.4.2AdaBoost算法
9.4.3AdaBoost的实际使用
9.4.4讨论
9.5提升决策树和梯度提升算法
9.5.1提升决策树和梯度提升算法的基本原理
9.5.2如何避免过拟合
9.5.3gbm包的实际使用
9.5.4讨论
9.6学习器的聚合及stacking
9.6.1简单平均
9.6.2加权平均
9.6.3stacking的基本思想及应用
9.7小结
参考文献
索引
内容推荐
本书围绕实际数据分析的流程展开,着重介绍数据探索、数据预处理和常用的机器学习算法模型。本书从解决实际问题的角度出发,介绍回归算法、分类算法、推荐算法、排序算法和集成学习算法。本书的最大特色就是贴近工程实践。首先,本书仅侧重介绍当前工业界最常用的机器学习算
随便看

 

霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。

 

Copyright © 2002-2024 101bt.net All Rights Reserved
更新时间:2025/2/23 3:36:52