部分 Hilbeft空间几何理论与有界线性算子
1 Hilbert空间几何学
1.1 内积空间与Hilbert空间
1.2 规范正交基与可分Hilbert空间表示
1.3 投影问题
1.4 L2空间中的规范正交基
1.5 线性泛函数及其Riesz表示、弱收敛
习题1
2 有界线性算子
2.1 连续线性算子
2.2 一致有界原理与几种收敛列的有界性
2.3 线性算子谱的概念
2.4 有界自伴算子及其特征
2.5 酉算子与Fourier变换
习题2
3 紧算子的谱特征
3.1 紧算子的概念及基本性质
3.2 紧算子的谱特征――FrecIholm两择一定理
3.3 Hillaert―Schmidt理论――紧自伴算子的特征展开
习题3
第二部分 无界线性算子与谱分解
4 无界算子
4.1 闭线性算子与可闭算子
4.2 共轭算子与闭图定理
4.3 对称算子与自伴算子
4.4 对称算子的自伴延拓
4.5 二次型的表示与Friedrichs自伴延拓
4.6 自伴算子的扰动与Schrodinger算子自伴性
习题4
5 自伴算子的谱分解
5.1 投影算子
5.2 谱族与函数的谱积分
5.3 自伴算子的谱族与谱分解
5.4 谱族对于自伴算子各类谱点的刻画的应用
5.5 紧自伴算子、乘法算子和一阶微分算子的谱分解
5.6 紧算子类――Hilbert―Schmidt算子
习题5
6 酉算子的谱族与谱分解
6.1 酉算子的谱分解
6.2 酉算子的谱与谱族的关系
6.3 Cayley变换
习题6
附录
附录1 三角矩量问题
附录2 半平面上一类解析函数的表示
附录3 Bochner定理
附录4 函数的正则化
参考文献