网站首页 软件下载 游戏下载 翻译软件 电子书下载 电影下载 电视剧下载 教程攻略
书名 | 三维流形拓扑学讲义(第2版)(英文版) |
分类 | 科学技术-自然科学-数学 |
作者 | (美)萨韦列夫 |
出版社 | 世界图书出版公司 |
下载 | |
简介 | 内容推荐 《三维流形拓扑学讲义》主要介绍低维拓扑和Casson理论,当然也不失适时地引入很研究进展和课题。包括许多经典材料,如Heegaard分裂、Dehn手术、扭结和连接不变量。从Kirby微积分开始,进一步讲述Rohlin定理,直到Casson不变量及其应用,并以简短介绍近期新进展作为结束。熟悉基础代数和微分拓扑,包括基础群、基本同调理论、横截性和流形上的庞加莱对偶性的数学和理论物理专业的读者均可阅读。 目录 Preface Introduction Glossary 1 Heegaard splittings 1.1 Introduction 1.2 Existence of Heegaard splittings 1.3 Stable equivalence of Heegaard splittings 1.4 The mapping class group 1.5 Manifolds of Heegaard genus≤1 1.6 Seifert manifolds 1.7 Heegaard diagrams 1.8 Exercises 2 Dehn surgery 2.1 Knots and links in 3—manifolds 2.2 Surgery on links in S3 2.3 Surgery description of lens spaces and Seifert manifolds 2.4 Surgery and 4—manifolds 2.5 Exercises 3 Kirby calculus 3.1 The linking number 3.2 Kirby moves 3.3 The linking matrix 3.4 Reversing orientation 3.5 Exercises 4 Even surgeries 4.1 Exercises 5 Review of 4—manifolds 5.1 Definition of the incersection form 5.2 The unimodular integral forms 5.3 Four—manifolds and intersection forms 5.4 Exercises 6 Four—manifolds with boundary 6.1 The intersection form 6.2 Homology spheres via surgery on knots 6.3 Seifert homology spheres 6.4 The Rohlin invariant 6.5 Exercises 7 Invariants of knots and links 7.1 Seifert surfaces 7.2 Seifert matrices 7.3 The Alexander polynomial. 7.4 Other invariants from Seifert surfaces 7.5 Knots in homology spheres 7.6 Boundary links and the Alexander polynomial 7.7 Exercises 8 Fibered knots 8.1 The definition of a fibered knot 8.2 The monodromy 8.3 More about torus knots 8.4 Joins 8.5 The monodromy of torus knots 8.6 Open book decompositions 8.7 Exercises 9 The Arf—invariant 9.1 The Arf—invariant of a quadratic form 9.2 The Arf—invarianc of a knot 9.3 Exercises 10 Rohlin's theorem 10.1 Characteristic surfaces 10.2 The definition of q 10.3 Representing homology classes by surfaces 11 The Rohlin invariant 11.1 Definition of the Rohlin invariant 11.2 The Rohlin invariant of Seifert spheres 11.3 A surgery formula for the Rohlin invariant 11.4 The homology coborclism group 11.5 Exercises 12 The Casson invariant 12.1 Exercises 13 The group SU(2) 13.1 Exercises 14 Representation spaces 14.1 The topology of representation spaccs 14.2 Irreducible representations 14.3 Representations of free groups 14.4 Representations of surface groups 14.5 Representations for Seifert homology spheres 14.6 Exercises 15 The local properties of representation spaces 15.1 Exercises 16 Casson's invariant for Heegaard splittings 16.1 The intersection product 16.2 The orientations 16.3 Independence of Heegaard splitting 16.4 Exercises 17 Casson's invariant for knots 17.1 Preferred Heegaard splittings 17.2 The Casson invariant for knots 17.3 The difference cycle 17.4 The Cassoninvariant for boundary links 175 The Casson invariant of a trefoil 18 An application of the Casson invariant 18.1 Triangulating 4—manifolds 18.2 Higher—dimcnsional manifolds 18.3 Exercises 19 The Casson invariant of Seifert manifolds 19.1 The space R(p,q,r) 19.2 Calculation of the Casson invariant 19.3 Exercises Conclusion Bibliography Index |
随便看 |
|
霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。