![]()
内容推荐 本书介绍了现代相交理论的一些主要思想,追溯了它们在古典几何中的起源,并描绘了一些典型的应用。本书只需要很少的技术背景:数学研究生可以读懂大部分内容。书中涉及诸多主题,很重要的是介绍了作者和R.MacPherson提出的一个强大的新方法。 本书介绍了利用正规锥几何构造和计算相交积的方法。在相交簇情形,这产生了Smuael相交重数;在另一个特别,则给出正规丛的Chern类的自相交公式;一般来说,它给出了作者和R.MacPherson的过分相交公式。书中提到的应用包括:退化轨迹、剩余交点和多点轨迹的公式;相交积的动态解释;Schubert演算和计数几何问题的解;Riemann-Roch定理等。 目录 Preface Chapter 1.Intersections of Hypersurfaces 1.1.Early history (Bezout,Poncelet) 1.2.Class of a curve (Plicker) 1.3.Degree of a dual surface (Salmon) 1.4.The problem of five conics 1.5.A dynamic formula (Severi,Lazarsfeld) 1.6.Algebraic multiplicity,resultants Chapter 2.Multiplicity and Normal Cones 2.1.Geometric multiplicity 2.2.Hilbert polynomials 2.3.A refinement of Bezout's theorem 2.4.Samuel's intersection multiplicity 2.5.Normal cones 2.6.Deformation to the normal cone 2.7.Intersection products:a preview Chapter 3.Divisors and Rational Equivalence 3.1.Homology and cohomology 3.2.Divisors 3.3.Rational equivalence 3.4.Intersecting with divisors 3.5.Applications Chapter 4.Chern Classes and Segre Classes 4.1.Chern classes of vector bundles 4.2.Segre classes of cones and subvarieties 4.3.Intersection forumulas Chapter 5.Gysin Maps and Intersection Rings 5.1.Gysin homomorphisms 5.2.The intersection ring of a nonsingular variety 5.3.Grassmannians and flag varieties 5.4.Enumerating tangents Chapter 6.Degeneracy Loci 6.1.A degeneracy class 6.2.Schur polynomials 6.3.The determinantal formula 6.4.Symmetric and skew-symmetric loci Chapter 7.Refinements 7.1.Dynamic intersections 7.2.Rationality of solutions 7.3.Residual intersections 7.4.Multiple point formulas Chapter 8.Positivity 8.1.Positivity of intersection products 8.2.Positive polynomials and degeneracy loci 8.3.Intersection multiplicities Chapter 9.Riemann-Roch 9.1.The Grothendieck-Riemann-Roch theorem 9.2.The singular case Chapter 10.Miscellany 10.1.Topology 10.2.Local complete intersection morphisms 10.3.Contravariant and bivariant theories 10.4.Serre's intersection multiplicity References Notes(1983-1995)
|