内容推荐 本书将motives理论的基本构造和motives上同调的有关结果相结合,形成更为显式的构造。理解这项工作需要先了解代数几何的基本知识。 作者构造并描述了任意基础概形上混合motives的三角范畴。大多数上同调的经典构造是在motives环境中描述的,包括高阶K-理论的陈类,逆紧映射的前推,Riemann-Roch定理,对偶,以及相关的motives同调,具有紧支撑的Borel-Moore同调和上同调。 本书适合对代数几何和K-理论感兴趣的研究生和数学研究人员阅读。 目录 Preface Part Ⅰ.Motives Introduction: Part Ⅰ Chapter Ⅰ.The Motivic Category 1.The motivic DG category 2.The triangulated motivic category 3.Structure of the motivic categories Chapter Ⅱ.Motivic Cohomology and Higher Chow Groups 1.Hypercohomology in the motivic category 2.Higher Chow groups 3.The motivic cycle map Chapter Ⅲ.K-Theory and Motives 1.Chern classes 2.Push-forward 3.Riemann-Roch Chapter Ⅳ.Homology, Cohomology, and Duality 1.Duality 2.Classical constructions 3.Motives over a perfect field Chapter Ⅴ.Realization of the Motivic Category 1.Realization for geometric cohomology 2.Concrete realizations Chapter Ⅵ.Motivic Constructions and Comparisons 1.Motivic constructions 2.Comparison with the category DMom(k) Appendix A.Equi-dimensional Cycles 1.Cycles over a normal scheme 2.Cycles over a reduced scheme Appendix B.K-Theory 1.K-theory of rings and schemes 2.K-theory and homology Part Ⅱ.Categorical Algebra Introduction: Part Ⅱ Chapter Ⅰ.Symmetric Monoidal Structures 1.Foundational material 2.Constructions and computations Chapter Ⅱ.DG Categories and Triangulated Categories 1.Differential graded categories 2.Complexes and triangulated categories 3.Constructions Chapter Ⅲ.Simpli and Cosimpli Constructions 1.Complexes arising from simpli and cosimpli objects 2.Categorical cochain operations 3.Homotopy limits Chapter Ⅳ.Canonical Models for Cohomology 1.Sheaves, sites, and topoi 2.Canonical resolutions Bibliography Subject Index Index of Notation
|